

MEANS ECG Physicians' Manual for Welch Allyn CP Series Electrocardiographs

Revision date: 2016-07

Welch Allyn 4341 State Street Road Skaneateles Falls, NY 13153 USA © 2016, DIR: 80011564, Ver: F www.welchallyn.com

Caution

Federal US law restricts sale of the device identified in this manual to, or on the order of, a licensed physician.

© 2016 Welch Allyn. All rights are reserved. To support the intended use of the product described in this publication, the purchaser of the product is permitted to copy this publication, for internal distribution only, from the media provided by Welch Allyn. No other use, reproduction, or distribution of this publication, or any part of it, is permitted without written permission from Welch Allyn. Welch Allyn assumes no responsibility for any injury to anyone, or for any illegal or improper use of the product, that may result from failure to use this product in accordance with the instructions, cautions, warnings, or statement of intended use published in this manual.

About this manual

This manual documents the logic behind the diagnostic criteria provided by the Welch Allyn CP series interpretive resting ECG system. It is provided as a supplement to the electrocardiographs user's manual for those interested in or requiring knowledge of specific details of the system's algorithms. Please refer to the electrocardiographs general user's manual for information about use, installation and configuration, as well as applicable precautions and warnings.

The algorithms employed in our system are collectively known as the Modular ECG Analysis System, MEANS. MEANS was developed by the Department of Medical Informatics at the Erasmus University of Rotterdam in the Netherlands. Portions of this manual are copyright © 1999 by the Department of Medical Informatics, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, the Netherlands.

The initial sections of this manual provide an overview of the general signal processing methodology involved, followed by detailed descriptions of the contour and rhythm analysis statement logic, and an index to all statements. The final section provides an analysis of the performance of MEANS.

Contents

1	INTRO	DUCTION	4
	1.1	Signal conditioning	4
	1.2	Pattern recognition	
	1.3	Parameter extraction	
	1.4	Diagnostic classification	
	1.5	Outline of the manual	
	1.6	References	
2	CONT	OUR ANALYSIS	9
	2.1	Contour parameters	9
	2.2	Dextrocardia and arm electrodes reversal	
	2.3	Wolf-Parkinson-White syndrome (WPW)	
	2.4	Left Bundle Branch Block (LBBB)	
	2.5	Right Bundle Branch Block (RBBB)	
	2.6	Incomplete Right Bundle Branch Block (IRBBB)	
	2.7	Intraventricular conduction delay (IVCD)	
	2.8	Atrial overload	
	2.9	Atrial abnormalities	15
	2.10	Axis deviations and fascicular blocks	16
	2.11	Low QRS voltage	
	2.12	QT abnormalities	
	2.13	Left ventricular hypertrophy (LVH)	
	2.14	Right ventricular hypertrophy	
	2.15	Infarction	
	2.16	Pulmonary disease	26
	2.17	ST elevation	26
	2.18	ST and T abnormalities	27
	2.19	Repolarization	
	2.20	Miscellaneous	29
	2.21	Interaction of statements	30
	2.22	Combination of statements	32
3	RHYT	IM ANALYSIS	33
	3.1	Introduction	
	3.2	Rhythm parameters	34
	3.3	Decision tree	
	3.4	Group 1: Rhythms with artificial pacemaker spikes	
	3.5	Group 2: Non-dominant QRS complexes	
	3.6	Group 3: Rhythms with atrial flutter or tachycardia	
	3.7	Group 4: Regular rhythms with P/QRS \leq 0.15	
	3.8	Group 5: Regular rhythms with 0.15 <p and="" pr="" qrs≤1.0="" range=""> 60 ms</p>	
	3.9	Group 6: Regular rhythms with P/QRS > 1.0 and PR range \leq 30 ms	
	3.10	Group 7: Regular rhythms with P/QRS > 1.0 and PR range > 30 ms	
	3.11	Group 8: Irregular rhythms with P/QRS \leq 0.15	
	3.12	Group 9: Rhythms with paroxysmal acceleration or deceleration of ventricular rate	
	3.13	Group 10: Irregular rhythms with 0.15 < P/QRS \leq 0.9 and PR range \leq 30 ms	
	3.14	Group 11: Irregular rhythms with $0.15 < P/QRS \le 0.9$ and PR range > 30 ms	
	3.15	Group 12: Irregular rhythms with $0.9 < P/QRS \le 1.2$ and PR range > 30 ms	
	3.16	Group 13: Irregular rhythms with P/QRS > 1.2 and PR range > 30 ms	
	3.17	Group 14: Irregular rhythms with P/QRS > 1.0 and PR range \leq 30 ms	
	3.18	Group 15: Rhythms with constant PR interval	
4	STATE		56
5	THE P	ERFORMANCE OF MEANS	61

1 Introduction

Computers and humans interpret ECG signals in fundamentally different ways. The principal difference is in the manner in which a computer "looks at" the signal. To be interpretable, a continuous (analog) signal must be converted into numbers, i.e., digitized. The signals are measured at short intervals, and the measured values (the samples) are stored as digital numbers. On this set of numbers the analysis must take place. The sampling must be dense enough to ensure sufficient fidelity in rendering the original analog signal. Current standards for ECG recording recommend a sampling rate of 500 Hz or higher.

After collection of the data, the processing follows a number of successive stages:

- Signal conditioning
- Pattern recognition
- Parameter extraction
- Diagnostic classification

Each of these steps must be performed correctly to ensure a satisfactory final result. If, for instance, the signals are not correctly cured of disturbances this may result in a faulty waveform recognition. The diagnostic classification is then likely to come out wrong. The successive steps will now be discussed more extensively.

1.1 Signal conditioning

The ECG signal can be disturbed in several ways:

- Continuous noise of a single frequency, sometimes with higher harmonics, due to 50 or 60 Hz AC mains interference.
- Drift: more or less gradual baseline shifts, e.g., caused by respiration.
- Bursts of noise of mixed frequencies and various amplitudes due to electrical signals from active muscles.
- Sudden baseline jumps due to changes in electrode-skin impedance.
- Spikes: isolated, large amplitude variations of short duration.
- Amplitude saturation of the signal.

To correct these disturbances, several techniques have been used. Mains interference is suppressed by an adaptive filter that estimates the coming noise estimates and subtracts the estimates from the encountered signal. Baseline shift is corrected by simply connecting the onsets of successive QRS complexes by straight lines and determining the signal amplitudes with respect to these line segments. Beat selection and averaging (see below) help to reduce disturbances of muscle noise. If a disturbance is detected that may affect the diagnostic classification, the program issues a warning.

The I-wave and K-wave isoelectric segments within the QRS are not included in the durations measurements of the respective adjacent waveform. Instead, the I and K durations are separate measurement values that are presented in the measurements report.

The electrocardiograph does not need to be configured with specific filter settings to pass the distortion test.

1.2 Pattern recognition

This part deals with the analysis of the various waveforms. First of all, the QRS complexes must be *detected*. No other waves or artifacts should be labeled as such. The intervals between QRS complexes are measured and stored. After all QRS complexes have been detected, they are *typified*, i.e., a comparison is performed that gives rise to classes of similar QRS complexes.

Often there is only one type of QRS complex. If there are more, the "ordinary," "representative" or "dominant" one is established; the others are "extraordinary" or "non-dominant". Mostly, the number of dominant complexes in a recording is larger than that of the non-dominant ones. In special cases this may not be true. In bigeminy their number may be equal to that of the non-dominant complexes, or be one less or one more, depending on when the recording starts and stops. If runs of tachycardia occur, the unusual complexes in a recording may even outnumber the dominant ones.

The second step is to search for atrial activity. Both P waves and flutter waves can be detected, when present. PP and PR intervals are also measured and stored for use in the rhythm analysis.

The third step is to mutually compare the ST-T segments of the dominant complexes. For the calculation of the averaged complex, only complexes are selected that have not only similar QRS, but also similar ST-T. In this way complexes that are disturbed by spikes or sudden baseline jumps are discarded.

For the morphological analysis, the selected dominant P-QRS-T complexes are averaged into one complex. The main advantage of averaging is to improve the signal-to-noise ratio. Noise is random and, in the averaging, the positive and negative oscillations will cancel out. An additional advantage is that the analysis now has to be performed only once, i.e., on a single representative complex. It may occur that in the averaged complex a P wave appears which was not consistently detectable in the rhythm analysis, or vice versa.

The final step in the pattern recognition process is the determination of the zero level in the representative P-QRS-T complex and the identification of the points of onset and offset of P, QRS, and T. The zero level is determined for the averaged complex per lead in an interval preceding the onset of the QRS complex. Onsets and offsets however are determined simultaneously over all leads together.

1.3 Parameter extraction

After the onset and end points of P, QRS and T waves have been established, the relevant parameters can be measured to provide the input for the diagnostic logic. Besides amplitudes and durations, other measurements such as surface areas under the signal are derived. Most measurements are made on the averaged complex in each lead separately (e.g., R amplitude, Q duration), but some are derived taking all leads into account (e.g., overall QRS duration, PR interval). These durations are generally longer than one would measure by hand in individual leads or lead groups since the first onset in any lead and the last offset are taken into account.

1.4 Diagnostic classification

The diagnostic logic operates on the parameters and produces both a rhythm classification and a contour or morphology classification. The criteria used by the computer may differ from the criteria used in the ECG textbooks. The basic reason is that a human observer is inaccurate but flexible and creative, a computer precise and obedient but rigid in its operation.

There are several specific reasons why ECG criteria in the program may differ from the conventional ones. First, there is no uniformity of criteria in the literature. Then, criteria may be based on inaccurate measurement by eye. Also, ECG measurements may be "falsified" for the ease of the reader: axis calculations are generally made from the amplitudes of QRS complexes rather than from the surface areas under the QRS tracings as prescribed by theory. Further, criteria are sometimes not quantitatively defined (How flat must a flat ST-T be? How slurred is a slurred QRS upstroke?) or their measurement is not unequivocally prescribed. For the computer program to work, a quantitative definition must somehow be decided upon. Moreover, conventional criteria may have been based on measurements produced by technically outdated instrumentation. The amplitudes of R waves have been consistently underestimated, especially in children, due to filtering effects by too low frequency response of the electrocardiographs. Finally, a human interpreter may deviate from strict criteria as he sees fit: sometimes criteria have been made to meet a priori expectations.

In one respect, the computer is inferior to the human observer: although the computer can measure very accurately, its powers of pattern recognition are inferior. For instance, it will have great trouble in detecting a P wave buried in a ST segment which is easily seen by the human eye.

1.5 Outline of the manual

The following of this manual consists of two main parts. One part describes the diagnostic criteria that are employed in the contour classification of the Modular ECG Analysis System (MEANS), the other describes the criteria used in the rhythm classification of MEANS. Each part contains a brief introductory section, a description of the measurements that are used in the diagnostic logic, and a comprehensive list of statements and corresponding diagnostic criteria. Related statements have been grouped in sections, e.g., all statements related to intraventricular conduction delay, left ventricular hypertrophy, etc. Finally, an index of the statements that can be generated by the program is provided on page 56.

A general format is used to specify the diagnostic criteria. The statement is given first, followed by one or more conditions that must be fulfilled for the statement to be issued by the program. Multiple conditions are combined with the use of logical "and" and "or" connectives, binding the (combinations of) conditions that have the same level of indentation. For example:

- Say: "probable inferior infarct"
- if: Q duration \ge 40 ms and 0.2 \le Q/R ratio < 0.3 in aVF
- or $30 \le Q$ duration < 40 ms and Q/R ratio ≥ 0.3 in aVF
- or Q duration in aVF \ge 20 ms
- and $$Q$ duration <math display="inline">\geq$ 50 ms and Q amplitude > 300 μV in III

1.6 References

In several publications, the program structure and signal analysis part of MEANS have been described. One publication, which also provides many references for further reading, is:

• Van Bemmel JH, Kors JA, Van Herpen G. Methodology of the modular ECG analysis system MEANS. Methods Inf Med 1990;29:346-53.

The measurement and classification parts of MEANS have extensively been evaluated, both by the developers themselves and by independent observers. A major evaluation study in the field of automated electrocardiography has been the project *Common Standards for Quantitative Electrocardiology* (CSE), in which about 15 ECG computer programs from all over the world have participated. The CSE study consisted of two parts, one pertaining to the measurement part of the ECG programs, the other to the diagnostic classification part. Two key references are:

- Willems JL, Arnaud P, Van Bemmel JH, Bourdillon PJ, Degani R, Denis B, et al. A reference database for multi-lead electrocardiographic computer measurement programs. J Am Coll Cardiol 1987;10:1313-21.
- Willems JL, Abreu-Lima C, Arnaud P, Van Bemmel JH, Brohet C, Degani R, et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med 1991;325:1767-73.

2 Contour analysis

2.1 Contour parameters

All parameters that are used in the diagnostic criteria of the contour classification are measured in the representative P-QRS-T complex. The lead-independent, overall parameters are presented in Table 1.

Name	Description
Heart rate	Ventricular rate (in beats per minute, BPM)
P axis	Axis of the P wave (in degrees, from –180 to 180)
P duration	Duration of the P wave (in ms)
PR interval	Duration of the PR interval (in ms)
QRS axis	Axis of the QRS complex (in degrees, from -180 to 180)
QRS duration	Duration of the QRS complex (in ms)
Corrected QT interval	QT interval corrected for heart rate according to Bazett's formula: QTc = QT * $\sqrt{(HR/60)}$ (in ms)
	Hodges' formula: QTc = QT + 1.75 × (HR-60)
	Note: The CP 50, CP 100 and CP 200, and the CP 150 and CP 250 devices support either the Bazett or Hodges QTc calculation on the printout. MEANS always uses the Bazett calculation in its interpretive output statements.

Table 1. Lead-independent parameters for the contour classification.

The parameters that are computed for each lead separately, are shown in Table 2. All amplitudes are taken as absolute values.

Name	Description
Delta wave	Slurring of the initial part of the QRS complex.
Negative J amplitude	Amplitude of a negative J point (in μ V).
Positive J amplitude	Amplitude of a positive J point (in μ V).
Negative P amplitude	Amplitude of the negative deflection of the P wave (in μ V).
Positive P amplitude	Amplitude of the positive deflection of the P wave (in μ V).
P notch	Notch in the positive deflection of the P wave.
Q amplitude	Maximum amplitude of the Q wave (in μ V).
Q duration	Duration of the Q wave (in ms).
negative QRS	Amplitude of the largest negative deflection of the QRS
amplitude	complex (in μV).
positive QRS	Amplitude of the largest positive deflection of the QRS
amplitude	complex (in μV).
top-top QRS amplitude	Amplitude of largest positive plus largest negative deflections
	of the QRS complex (in μ V).
QRS area	Area under the positive deflections of the QRS complex
	minus area under the negative deflections of the QRS
	complex (in mVms).
Q/R ratio	Ratio of the maximum amplitudes of the Q and R waves.
QS pattern	QRS complex consisting of a Q wave only.
R amplitude	Maximum amplitude of the R wave (in μ V).
R duration	Duration of the R wave (in ms).
R notch	Notch in the positive deflection of the QRS complex.
R' amplitude	Maximum amplitude of the R' wave (in μ V).
R/S ratio	Ratio of the maximum amplitudes of the R and S waves.
S amplitude	Maximum amplitude of the S wave (in μ V).
S duration	Duration of the S wave (in ms).
S' amplitude	Maximum amplitude of the S' wave (in μ V).
ST slope	Slope of the ST segment (in μ V/100 ms).
Negative T amplitude	Amplitude of the negative deflection of the T wave (in μ V).
Positive T amplitude	Amplitude of the positive deflection of the T wave (in μ V).

Table 2. Lead-dependent parameters for the contour classification.

2.2 Dextrocardia and arm electrodes reversal

Skip tests

Skipilesis				
if:	QRS area in I > 0			
or	top-top QRS amplitude in I \leq 150 μ V			
or	positive T wave in I			
or	$-100 \le P \text{ axis} \le 100^{\circ}$			
Say: if:	"dextrocardia" top-top QRS amplitude in V6 \leq 500 μV			
Say: if:	"arm electrodes interchanged" top-top QRS amplitude in V6 > 500 μ V			

If either test passed, no further contour analysis is performed.

2.3 Wolf-Parkinson-White syndrome (WPW)

The presence of delta waves is a necessary condition for the diagnosis of WPW. The length of the PR interval is another obvious parameter to use. However, it is not a necessary criterion, for if the accessory pathway is slowly conducting, the PR interval could be normal. Moreover, WPW can occur in the absence of P waves, for example in the presence of atrial fibrillation. For this reason this criterion has not been used to construct the diagnosis of WPW, but has only to distinguish between LBBB and WPW type B in case both diagnoses have been made (see section LBBB).

Say:"WPW"if:delta waves in at least 2 extremity leadsanddelta waves in at least 2 precordial leadsandQRS duration > 100 ms

If test WPW passed, only a test for LBBB is performed.

2.4 Left Bundle Branch Block (LBBB)

The primary condition for the diagnosis of a complete block is prolonged QRS duration. In the program the limit is 130 ms. The normal initial QRS activity to the right and anterior is smaller than normal or absent. Soon after the beginning of QRS the electrical forces turn posteriorly, and somewhat to the left and mostly horizontally. The predominantly posterior activity produces generally deep S waves in V1 and V2 while the R waves in V5 and V6 tend to remain low. Therefore, the program requires r waves in V1 and V2 to be minor (they even may be lacking, and in V5 and V6 q's must be reciprocally absent). This is expressed by the requirement of a net negative area and R/S ratio of less than 1/3 in V1. The R waves in V5 and V6 will have a delayed intrinsicoid deflection. Septal infarction should not be diagnosed in the presence of LBBB. Finally, if LBBB and WPW both come into consideration the case is decided by the duration of the PR interval.

Skip tes if: or	sts Q wave in any of I, V5, V6 QRS duration ≤ 130 ms			
Say: if: or	"LBBB" and and and and	S amplite −100 ≤ 0 negative QRS are	ude in V6 QRS area QRS am ea > 0 in \	-100 mVms ≤ 1000 μV in V1 < −40 mVms plitude > 3 times positive QRS amplitude in V1 /6 tion at ≥ 50 ms in V5 or V6
Say: if: or	"possible and and and	QRS are S amplite $-100 \le C$	ude in V6 QRS area	-100 mVms > 1000 μ V in V1 < -40 mVms plitude > 3 times positive QRS amplitude in V1 QRS area > 0 in V6 intrinsicoid deflection at < 50 ms in V5 and V6 QRS area \leq 0 in V6 intrinsicoid deflection at \geq 50 ms in V5 or V6
if: and and then:	test LBBB passed test WPW passed QRS area in V1 \leq -5 mVms 0 \leq QRS axis \leq 90°			
	Say: if: suppress if:	"possible "possible s:	e WPW" PR inter "LBBB"	val > 140 ms val ≤ 140 ms

2.5 Right Bundle Branch Block (RBBB)

The ECG abnormality in RBBB consists of a late, protracted QRS activity to the right and anterior with concomitant overall increase of QRS duration (\geq 130 ms). The program therefore looks for a late R, an R' or a broad notched R wave in V1 or V2, all with delayed intrinsicoid deflection, and reciprocal broad S waves in the lateral leads.

The QRS axis has a certain influence on the S duration in lead I. Lead I, although horizontal in geometrical space, is tilted upward on the left side in electrical space. In left axis deviation, this will result in a projected S wave which is less deep and of shorter duration than the S wave in V5 or V6 leads that are tilted downwards on the left. This aspect has been taken into account for the criteria on the S duration. In the presence of RBBB, a diagnosis of RVH may also be entertained if the R wave in V1 is tall.

Skip tes if: or	ts QRS duration < 130 ms S' amplitude in V1 \geq 100 μV			
Say: if: or	"RBBB" and and and	intrinsic	on ≥ 50 ms in I, V5, V6 oid deflection at ≥ 55 ms in V1 or V2 on ≥ 30 ms in V5 or V6 S duration in I ≥ 20 ms and QRS axis < -45° S duration in I ≥ 30 ms and QRS axis $\ge 45^{\circ}$ R' wave or R notch in V1 or V2 Q wave and intrinsicoid deflection at ≥ 50 ms in V1	
if: and then:	Q ampli Say: if: Say:	"septal i Q durati "probabl	D μV in V1 and V2 nfarct" on ≥ 30 ms in V1 or V2 le septal infarct"	
Suppres if: or or	if: Q duration ≥ 20 ms in V1 or V2 ess "RBBB" Q amplitude in V2 $\le 100 \ \mu$ V R amplitude in V2 $< 200 \ \mu$ V intrinsicoid deflection in V2 at < 50 ms			
		or infarct" QRS amp	plitude in V1 \ge 1500 μ V	

2.6 Incomplete Right Bundle Branch Block (IRBBB)

For IRBBB, comparable conditions apply the same as RBBB, but QRS duration is less increased (between 110 and 130 ms) and the intrinsicoid deflection time is shorter.

Skip tests if: QRS duration \ge 130 ms

or	ORS du	$a_{100} = 100 \text{ ms}$	
or	S' amplitude in V1 \ge 100 μ V		
Say:	"incompl	ete RBBB"	
if:	•	R' amplitude \geq 300 μ V in V1 or V2	
or		R' in V1	
	and	positive P wave in V1	
or		S duration \ge 40 ms in I, V5, V6	

and intrinsicoid deflection at ≥ 45 ms in V1 or V2

2.7 Intraventricular conduction delay (IVCD)

Only in the absence of diagnosable RBBB, LBBB or WPW will a statement of intraventricular conduction delay be made. The delay can be classified in different grades of severity.

 $\begin{array}{ll} Say: & \text{``slight intraventricular conduction delay} \\ \text{if:} & 112 \text{ ms} \leq \text{QRS duration} < 126 \text{ ms} \\ \end{array} \\ Say: & \text{``moderate intraventricular conduction delay''} \\ \text{if:} & 126 \text{ ms} \leq \text{QRS duration} < 140 \text{ ms} \\ \end{array} \\ Say: & \text{``marked intraventricular conduction delay''} \\ \text{if:} & 140 \text{ ms} \leq \text{QRS duration} < 180 \text{ ms} \\ \end{array}$

Say: "very marked intraventricular conduction delay" if: QRS duration \ge 180 ms

2.8 Atrial overload

The diagnosis of right or left atrial overload (RAO and LAO) will be considered in the presence of a normal P axis. Otherwise an unusual P axis will be reported.

In LAO the P wave is characterized by a broad negative terminal part in lead V1 and an increase of overall duration. In RAO a tall P wave in lead II and aVF and/or in V1 and V2 is expected. In diagnosing RAO an adjustment has been built in for heart rate: in tachycardia the amplitude of the P wave has to be slightly higher to qualify for the diagnosis, than with normal heart rate. The reason for this adjustment is the superposition of the P on the preceding U wave or T wave occurring at higher heart rates. Above 130 BPM no attempt is made to diagnose RAO.

Skip tesi if: or	ts P axis ≤ P axis >			
Say: if: and	"left atrial overload" negative P amplitude in V1 ≥ 180 μV P duration > 135 ms or LVH test passed			
Say: if: or	"right atr and and	$ \begin{array}{ll} \mbox{ial overload}'' \\ \mbox{heart rate < 100 BPM} \\ \mbox{ positive P amplitude } \geq 275 \ \mu \mbox{V in V1 or V2} \\ \mbox{or} & \mbox{ positive P amplitude in II + positive P amplitude in aVF} \geq 525 \ \mu \mbox{V} \\ \mbox{ 100 } \leq \mbox{ heart rate < 130 BPM} \\ \mbox{ positive P amplitude} \geq 300 \ \mu \mbox{V in V1 or V2} \\ \mbox{ or} & \mbox{ positive P amplitude in II + positive P amplitude in aVF} \geq 575 \ \mu \mbox{V} \\ \end{array} $		

2.9 Atrial abnormalities

Say: if: or	"unusual P axis" P axis ≤ –30° P axis > 100°	
Say: if: and	"intra-atrial conduct P duration > 135 r negative P amplitu	,
Say: if: and	"high P voltage" test RAO did not p and	positive P amplitude $\geq 275~\mu V$ in any lead heart rate < 100 BPM
	or and	positive P amplitude \ge 300 μ V in any lead 100 \le heart rate < 130 BPM

2.10 Axis deviations and fascicular blocks

Axis deviations are distinguished in vertical, right, marked right and extreme right inferior on the one hand and horizontal, left, marked left and extreme right superior on the other hand.

Besides a complete LBBB it is also possible to find a left anterior or posterior fascicular block (LAFB or LPFB). These statements will always be tested in combination with an axis deviation. (LPFB can only be diagnosed in conjunction with RBBB.)

In the presence of inferior infarction no statement of left axis deviation is given, it being due to initial negativity in the inferior leads. In the presence of LBBB the axis tends to deviate to the left. Therefore the threshold for stating left axis deviation is increased. Moreover, the diagnosis of complete LBBB takes precedence over that of left anterior fascicular block.

Say: if:	"vertical axis" 80 < QRS axis ≤ 100°			
Say: if:	"right axis deviation" 100 < QRS axis \le 120°			
Say: if:		right axis RS axis ≤	deviation" 150°	
Say: if:	"extreme right inferior axis deviation" 150 < QRS axis \le 180°			
Say: if: and	"consistent with LPFB" 120 < QRS axis ≤ 180° RBBB			
Say: if:	"horizontal axis" $-30 \le QRS$ axis < -10°			
if: then:	test LBBB did not pass			
inen:	Say: if:	"left axis	deviation" $-60 \le QRS$ axis < -30°	
	Say: if:	"marked	left axis deviation" $-120 \le QRS$ axis < -60°	
	Say: if:	"extreme	right superior axis deviation" $-180 \le QRS$ axis < -120°	
	Say: if: and and	S amplit	ent with LAFB" −120 ≤ QRS axis < −45° ude in III > 500 μV ude in III < S amplitude in II	
if:	test LBBB passed			
then:	Say: if:	"left axis	deviation" $-120 \le QRS$ axis < -45°	

2.11 Low QRS voltage

if:	Say: "low QRS voltage in extremity leads" top-top QRS amplitude \leq 500 μ V in all extremity leads
Say: if:	"low QRS voltage in precordial leads" top-top QRS amplitude \leq 1000 μV in all precordial leads
Say: if:	"low QRS voltage" both previous tests passed

2.12 QT abnormalities

The QT interval is measured from the beginning of the Q wave until the end of the T wave. In the case of intraventricular conduction delay, the excess QRS duration (>106 ms) is subtracted from the measured QT. A correction is made for the heart rate, using Bazett's equation: corrected QT interval = QT interval * $\sqrt{(heart rate/60)}$. The corrected QT interval renders the QT interval for a standard heart rate of 60 beats per minute. The upper limit of 470 ms is increased to 500 ms in case of infarct.

Skip test if: or	WPWB a	and QRS duration < 126 ms e \geq 110 BPM
Say: if:		T interval, consider hypercalcaemia" d QT interval < 330 ms
Say: if: or	"long QT and and	interval, consider hypocalcaemia or quinidine-like drug" corrected QT interval \geq 470 ms no infarct test passed corrected QT interval \geq 500 ms any infarct test passed

2.13 Left ventricular hypertrophy (LVH)

The diagnosis of LVH rests on three types of parameters: voltage, shape, and repolarization. For each parameter, points are accumulated according to its degree of abnormality. The higher the score, the higher the overall grading of the LVH. The following gradations are distinguished, in which severity and probability go together: "consider", "possible", "probable", "definite", "pronounced", and "very pronounced".

The *voltage* is determined in both the horizontal and frontal planes, but only the plane with the highest score will be used in the classification. For the horizontal plane the voltages are measured in leads V1, V5 and V6. In the frontal plane leads I and II are used. If the voltage in either plane does not meet the criteria, no further analysis for diagnosing LVH will be done.

In both planes an adjustment has been made for age. At age 35 no correction is applied, at age 90 a maximal correction of about 6 mm in the precordial measurement and of 3 mm in the frontal plane is added to the measured voltage. For people younger than 35 years the adjusted voltage will be lower than the calculated voltage, for older people the opposite applies.

The *shape* of the QRS complex is determined in that plane where the highest voltage score is reached. The main parameters on which the shape score is based are the intrinsicoid deflection and the sequence of small r waves in the right and tall R waves in the left precordial leads.

In the category *repolarization* the program tests for the presence and degree of ST depression and T negativity in the leads I, II, aVL, aVF, V5, and V6. Strain scores in the frontal and horizontal planes are determined using the ST slope and the J- and T-wave amplitudes.

2.14 Right ventricular hypertrophy

The diagnosis RVH is not subdivided in such an elaborate way as LVH is. A distinction between probable and definite can be made.

Presence of left or right atrial overload helps to make the diagnosis of RVH, because it provides circumstantial evidence. In the presence of RBBB, IRBBB or posterior infarction, the program may issue a statement that RVH is still to be considered. A more definite statement of RVH is ruled out, to prevent too much over-diagnosing.

Skip tes	sts			
if:	QRS duration \geq 160 ms			
or	QRS axis $\leq 0^{\circ}$			
or	test RBBB passed			
or	test LBBB passed			
Say:	"RVH"			
if:		R/S ratio \geq 1 in V1 and Q/R ratio \leq 1 in V1		
	and	positive QRS amplitude in V1 \ge 500 μ V		
		and positive T amplitude < negative T amplitude in V1 and V2		
		or positive QRS amplitude < S amplitude in V5 or V6		
		or QRS axis $\geq 100^{\circ}$		
		and LAO or RAO		
or		QRS axis $\geq 120^{\circ}$		
	and	R amplitude < S amplitude in II		
	and	S amplitude in aVF \leq 200 μ V		
	and	S duration in aVF < 40 ms		
	and	tests for high-lateral, lateral, and inferior infarcts did not pass		
Say:	"nrohah	le RVH"		
if:	probub	Q/R ratio \leq 1 and R/S ratio \geq 1 in V1		
	and	positive QRS amplitude in V1 \ge 1500 μ V		
	and	positive T amplitude in V1 < 700 μ V		
or		Q/R ratio $\leq 1/2$ and R/S ratio ≥ 2 in V1		
	and	positive QRS amplitude in V1 \ge 300 μ V		
	and	positive T amplitude < negative T amplitude in V1		
		or positive QRS amplitude < S amplitude in V5 or V6		
or		QRS axis ≥ 80°		
	and	positive T amplitude < negative T amplitude in V1 and V2		
	and	positive QRS amplitude < S amplitude in V5 or V6		
	and	S amplitude in aVF \leq 200 μ V		
	and	S duration in aVF < 40 ms		
	and	test for lateral infarct did not pass		
or		QRS axis ≥ 100°		
	and	LAO or RAO		
Say:	"conside	er RVH"		
if:		test RBBB passed		
	and	QRS axis ≥ -45°		
	and	positive T amplitude < negative T amplitude in V2		
or		test IRBBB passed		
	and	positive QRS amplitude in V1 \ge 500 μ V		
	and	positive QRS amplitude > negative QRS amplitude in V1		
or		test posterior infarct passed		
	and	QRS axis > 100°		

2.15 Infarction

This section of the program classifies an infarction according to location and estimates the probability of its presence. The diagnosis of infarction is largely based on the presence and duration of Q waves, Q/R ratios, and QS patterns. T and ST abnormalities are used in statements on the age of the infarct (see section Repolarization).

The location of the infarction is determined by the leads in which the abnormalities are found. The program distinguishes six locations: septal (lead V1, V2), anterior (V3, V4), lateral (V5, V6), high lateral (I, aVL), inferior (aVF, III), and posterior (V1, V2). Lead II may be involved in inferior infarction as well as in lateral infarction. Combined and more extensive infarcts will generate infarct statements for more than one location (see section Combination of statements).

Four degrees of probability are distinguished: "definite", "probable", "possible", or "consider".

Criteria on which a diagnosis of infarction has been made can also lead to other diagnoses, like LBBB, RBBB, LVH and RVH. The choice between these possible diagnoses is based on exclusion logic in the program, and in some situations, probabilities are adapted or criteria are tightened.

Inferior infarction

An abnormal Q wave must be found in aVF and either II or III to even consider the diagnosis of inferior infarction. As a rule the Q wave in aVF is shallower and shorter than that in III. Its threshold to qualify as an infarct Q can therefore be lower.

Inferior infarction may produce a left (i.e., superior) axis deviation if one only considers the ratio of upward and downward forces. In inferior myocardial infarction, however, this ratio is shifted due to initial negativity (Q in aVF) whereas in ordinary left axis deviation it is associated with deepening of the S wave in aVF.

Skip test if: or		ude + R a or or	amplitude in aVF < 200 μ V Q amplitude in aVF \leq 100 μ V Q amplitude in II \leq 70 μ V Q amplitude in aVF \leq 70 μ V Q amplitude in III \leq 100 μ V
Say: if:	"inferior Q duratio		is and Q/R ratio \ge 0.3 in aVF
Say: if: or or	Q duratio	luration < Q duration	infarct" is and $0.2 \le Q/R$ ratio < 0.3 in aVF 40 ms and Q/R ratio ≥ 0.3 in aVF on in aVF ≥ 20 ms on ≥ 50 ms and Q amplitude > 300 µV in III
Say: if: or or			

Septal infarction

Say: if: or or		ion $\ge 35 \text{ m}$ ion $\ge 40 \text{ m}$	is and Q/R ratio \ge 1/3 in V1 or V2 is and Q amplitude > 100 μ V in V1 or V2 ern in V2 R amplitude in V1 \ge 70 μ V QS pattern in V3 Q duration in V3 \ge 25 ms Q wave and R amplitude < 250 μ V and R duration < 26 ms in V3 R amplitude < 200 μ V and R duration < 16 ms in V3	
Say:	"probable septal infarct"			
if:		$25 \le Q$ duration < 35 ms and Q/R ratio $\ge 1/3$ in V2 or V3		
or	$35 \leq Q$ duration < 40 ms and 1/4 $\leq Q/R$ ratio < 1/3 in V2 or V3			
•			is and R amplitude \ge 200 μ V in V2	
or			ude in V2 < 150 μV	
	and	R amplit	ude in V2 < R amplitude in V1 – 50 μ V	
	and		R duration in V2 \leq R duration in V1	
		or	Q duration in V3 \ge 25 ms	
Say:	"possibl	e septal ir	farct"	
if:	•	$25 \le Q$ duration < 35 ms and 1/4 $\le Q/R$ ratio < 1/3 in V1 or V2		
or	QS pattern and R amplitude < 70 μ V in V1			
	and	QS patte	ern in V2	
	and	test LVF	l did not pass	
or		QS patte	ern or R amplitude < 70 μ V in V1	
	and Q amplitude < S amplitude and R amplitude < S amplitude in V2			

and test LVH did not pass

Anterior infarction

Say: if: or or or	"anterior infarct" Q duration \ge 35 ms and Q/R ratio \ge 1/3 in V3 or V4 Q duration \ge 40 ms and Q amplitude > 100 µV in V3 or V4 QS pattern in V3 or V4 R amplitude < 100 µV in V3 and V4		
or	R amp	itude < 100 μ V in V4 and V5	
or		R amplitude < 150 μ V in V2 and V3	
or	and	R amplitude < 150 µV or Q wave in V4 R amplitude < 150 µV in V3 and V4	
	and	R amplitude < 150 μV or Q wave in V5	
or		R amplitude in V3 < R amplitude in V2	
	and	R amplitude in V3 < 150 μV	
	and	R amplitude in V3 > R amplitude in V4 or Q wave in V4	
or		R amplitude in V4 < R amplitude in V3	
	and	R amplitude in V4 < 150 μV	
	and	R amplitude in V4 > R amplitude in V5 or Q wave in V5	
Say:	"probable anterior infarct"		
if:	$25 \le Q$ duration < 35 ms and Q/R ratio $\ge 1/3$ in V3 or V4		
or	$35 \le Q$ duration < 40 ms and $1/4 \le Q/R$ ratio < 1/3 in V4 or V5		
or		R amplitude in V3 < 150 μV	

- R amplitude in V3 < 150 μV R amplitude in V3 < R amplitude in V2 50 μV and
 - R duration in V3 \leq R duration in V2 R amplitude in V4 < 150 μ V and
 - R amplitude in V4 < R amplitude in V3 50 μ V and
 - R duration in V4 \leq R duration in V3 and

Say: "possible anterior infarct"

or

if: $25 \leq Q$ duration < 35 ms and 1/4 $\leq Q/R$ ratio < 1/3 in V3 or V4

Lateral infarction

Say: if: or or or	"lateral infarct" Q duration \ge 35 ms and Q/R ratio \ge 1/3 in V5 or V6 Q duration \ge 40 ms and Q amplitude > 100 µV in V5 or V6 QS pattern in V5 or V6 R amplitude < 100 µV in V5 and V6		
or		R amplitude < 150 μ V in V4 and V5	
	and	R amplitude < 150 μV or Q wave in V6	
or		R amplitude in V5 < R amplitude in V4	
	and	R amplitude in V5 < 150 μV	
	and	R amplitude in V5 > R amplitude in V6 or Q wave in V6	
Say:	"probob	le lateral infarct"	
or or	35 ≤ Q (duration < 40 ms and 1/4 \leq Q/R ratio < 1/3 in V5 or V6 ion < 35 ms and Q/R ratio \geq 1/3 in V5 or V6 R amplitude in V5 < R amplitude in V4 – 50 µV R amplitude in V6 < 150 µV	
if: or	$35 \le Q$ of Q duration Q duration Q and Q	duration < 40 ms and 1/4 \leq Q/R ratio < 1/3 in V5 or V6 ion < 35 ms and Q/R ratio \geq 1/3 in V5 or V6 R amplitude in V5 < R amplitude in V4 – 50 μ V R amplitude in V6 < 150 μ V R amplitude in V6 < R amplitude in V5 – 50 μ V	
if: or	$35 \le Q$ of Q duration and and and and and and and and and an	duration < 40 ms and 1/4 \leq Q/R ratio < 1/3 in V5 or V6 ion < 35 ms and Q/R ratio \geq 1/3 in V5 or V6 R amplitude in V5 < R amplitude in V4 – 50 μ V R amplitude in V6 < 150 μ V R amplitude in V6 < R amplitude in V5 – 50 μ V test RBBB did not pass	
if: or	$35 \le Q$ of Q duration Q duration Q and Q	duration < 40 ms and 1/4 \leq Q/R ratio < 1/3 in V5 or V6 ion < 35 ms and Q/R ratio \geq 1/3 in V5 or V6 R amplitude in V5 < R amplitude in V4 – 50 μ V R amplitude in V6 < 150 μ V R amplitude in V6 < R amplitude in V5 – 50 μ V	

if: $25 \le Q$ duration < 35 ms and 1/4 $\le Q/R$ ratio < 1/3 in V5 or V6

High-lateral infarction

An abnormal Q wave in both leads I and aVL is necessary to diagnose high-lateral infarction. In this situation the Q wave in I is by nature shallower and shorter than that in aVL. Therefore the threshold to qualify as an infarct Q is lower in I than in aVL.

A minimum amplitude condition has been built in for the R wave in lead I to prevent the diagnosis of a high-lateral infarction in pulmonary disease, where a very low R voltage in I may occur.

Skip test if: or or	ats Q amplitude in I \leq 70 μV Q amplitude in aVL \leq 100 μV R amplitude in I < 100 μV		
Say: if: or	0	$ \begin{array}{l} \mbox{eral infarct}'' \\ \mbox{on} \geq 40 \mbox{ ms in I and aVL} \\ \mbox{35} \leq Q \mbox{ duration in I < 40 ms} \\ \mbox{Q duration in aVL} \geq Q \mbox{ duration in I} \\ \mbox{Q/R ratio} \geq 1/3 \mbox{ in I} \\ \mbox{or} \qquad QRS \mbox{ axis} \geq 70^{\circ} \end{array} $	
Say: if: or	"probable and and and	e high-lateral infarct" $35 \le Q$ duration < 40 ms and 1/4 $\le Q/R$ ratio < 1/3 in I Q duration in aVL $\ge Q$ duration in I $25 \le Q$ duration in I < 35 ms Q duration in aVL $\ge Q$ duration in I Q/R ratio $\ge 1/3$ in I or QRS axis $\ge 70^{\circ}$	
or	and	Q duration ≥ 20 ms and R amplitude $\ge 100 \ \mu$ V in I Q duration ≥ 50 ms and R amplitude $\ge 300 \ \mu$ V in aVL	
Say: if: or	and	e high-lateral infarct" $25 \le Q$ duration < 35 ms and $1/4 \le Q/R$ ratio < 1/3 in I Q duration in aVL $\ge Q$ duration in I Q duration ≥ 20 ms and R amplitude $\ge 100 \ \mu$ V in I $10 \le Q$ duration ≥ 20 ms and R amplitude $\ge 100 \ \mu$ V in I	
	and	$40 \le Q$ duration < 50 ms and R amplitude $\ge 300 \ \mu V$ in aVL	

Posterior infarction

Skip tes if: or	test RB	BB passed BB passed			
Say:	"possibl	e posterior infarct"			
if:		test RVH did not pass			
and	R amplit	R amplitude \geq 300 µV and R duration \geq 30 ms in V1			
and	R amplitude \ge 700 μ V and R duration \ge 40 ms in V2				
and	no Q wave in V2				
and	R/S ratio in V2 \geq 1				
and		positive T amplitude \geq negative T amplitude in V1 and V2			
	or	negative J amplitude > 100 μ V and positive T amplitude \ge 100 μ V in V2			
and		test inferior infarct passed			
	or	Q amplitude > 100 μ V and R amplitude < 1500 μ V and Q/R rat \ge 0.2 in V6			
or					
		test RVH passed			
	and	test inferior infarct passed			

2.16 Pulmonary disease

Skip tes if: or or or or	ests QRS duration \ge 126 ms positive QRS amplitude in V5 \ge 950 μ V test septal infarct passed test anterior infarct passed test lateral infarct passed		
Say:	"consider pulmonary disease"		
if:		undeterm	nined P axis
	and	QRS are	a in V5 < 0
	and		top-top QRS amplitude \leq 500 μ V in all extremity leads
		or	$80 \leq QRS$ axis < 120°
or		50 ≤ P ax	kis < 110°
	and	QRS are	a in V4 < 0
	and		top-top QRS amplitude \leq 500 μ V in all extremity leads
		or	$80 \le QRS axis < 120^{\circ}$
		or	RAO
		or	QRS area in V3 < 0 and positive P amplitude in II \geq 250 μV
or		top-top C	RS amplitude \leq 500 μ V in all extremity leads
	and	QRS are	a in V4 < 0
	and	top-top C	RS amplitude in V6 < 600 μV
	and		$80 \le QRS axis < 120^{\circ}$
		or	RAO
		or	QRS area in V3 < 0 and positive P amplitude in II \geq 250 μV
Say:	" with co	or pulmona	
Gay.	with Ct	n puintona	

- " with cor pulmonale" test pulmonary disease passed Q amplitude in V1 \leq 70 μV R amplitude in V1 \geq 60 μV R' amplitude in V1 \geq 60 μV if:
- and
- and
- and

2.17 ST elevation

Say: if: and	"inferior ST elevation" positive J amplitude in aVF \geq 100 μV positive J amplitude \geq 100 μV in II or III
Say: if:	"high-lateral ST elevation" positive J amplitude ≥ 100 μV in I and aVL
Say: if:	"right-precordial ST elevation" positive J amplitude $\geq 200 \ \mu V$ in V2 and V3
Say: if: and	"mid-precordial ST elevation" positive J amplitude in V3 \geq 200 μV positive J amplitude \geq 100 μV in V4 and V5
Say: if:	"left-precordial ST elevation" positive J amplitude \geq 100 μV in V5 and V6

2.18 ST and T abnormalities

Skip tests

- test LBBB passed if:
- Say: "consider pericarditis"
- if: positive J amplitude > 120 μ V in at least 3 of the extremity leads
- positive J amplitude > 120 μ V in at least 6 of all leads and and
 - heart rate \geq 70 BPM
 - positive J amplitude > 120 μ V and positive T amplitude ≥ 50 μ V in all leads or
- Say: "high T voltage, consider hyperkalemia"
- $330 \leq$ corrected QT interval < 470 ms if:
- positive T amplitude > 1000 μ V in V3, V4, V5 and
 - positive T amplitude > 1000 μ V in V4, V5, V6 or

2.19 Repolarization

The negativity of the T wave in all leads except aVR and V1 is classified in one of the following categories:

"flat or low negative":	positive T amplitude \leq 50 μ V and negative T amplitude \leq 30 μ V
"small negative":	30 < negative T amplitude \leq 100 μ V
"negative":	100 < negative T amplitude \leq 250 μ V
"large negative":	250 < negative T amplitude \leq 500 μ V
"very large negative":	negative T amplitude > 500 μ V

Using this negative T wave classification, repolarization statements can be made for five different localizations: "inferior" (II, III, aVF), "high-lateral" (I, aVL), "right precordial" (V2, V3), "mid precordial" (V3, V4, V5), and "left precordial" (V5, V6). The severity of a repolarization disturbance is indicated by one of six possible grades: "minimal", "minor", "slight", "moderate", "marked", "very marked". The grades of severity are determined by considering the negativity of the T wave in the leads that are pertinent to a particular localization.

In general, the statement "very marked <loc> repolarization abnormality", where <loc> denotes one of the five localizations mentioned above, requires a large negative T wave in at least one of the leads pertaining to that localization with additional less severe constraints on the remaining leads. In a similar way, the statement "marked <loc> repolarization disturbance" requires a large negative T wave in at least one of the relevant leads. Statements for "moderate", "slight", and "minimal" repolarization abnormality require negative, small negative, and flat or low negative T waves, respectively. Grade "minor" requires both small negative and flat or low negative T waves to be present.

After each repolarization statement, a statement as to the cause of the repolarization disturbance is appended. Depending on the T abnormalities found and possible other abnormalities, such as LVH or infarction, the program may append one of the following statements:

- ", consider ischemia"
- ", consider ischemia or LV overload"
- ", consider ischemia and/or digitalis"
- ", consider ischemia, LV overload and/or digitalis"
- " secondary to infarct"
- ", consider infarct of recent occurrence"
- " secondary to LVH"
- " secondary to LVH, consider also infarct"
- " secondary to LVH, consider also ischemia"
- " secondary to infarct, consider also LV overload"
- " secondary to RVH"
- " secondary to RBBB"
- " secondary to LBBB"
- ", consider juvenile pattern"
- ", consider feminine pattern"
- ", compatible with early repolarization"
- ", consider acute infarct occurrence"
- ", consider acute ischemia"
- ", probably reciprocal"
- ", consider ischemia, or non-specific change"
- ", secondary to RVH and/or juvenile pattern"
- ", secondary to RBBB and/or juvenile pattern"
- ", consider juvenile and/or feminine pattern"
- ", consider feminine pattern and/or ischemia"
- ", consider ischemia, LV overload or -non-specific change"
- ", probably non-specific change"

2.20 Miscellaneous

Skip test	s
if:	test RBBB passed
or	test IRBBB passed
or	test RVH passed
Say:	"RSR' in V1 and V2"
if:	Q amplitude < 70 μ V in V1 and V2
and	R amplitude ≥ 60 μ V in V1 and V2
and	R' amplitude ≥ 60 μ V in V1 and V2
and	S' amplitude < 100 μ V in V1 and V2
Say:	"RSR' in V1"
if:	the above criteria apply to V1 only
Say:	"RSR' in V2"
if:	the above criteria apply to V2 only

2.21 Interaction of statements

When the classification process leads to coexisting diagnostic statements, a weighing procedure may come into play to change the certainty qualifier of one or more of the statements. These changes are described below. The following hierarchy is adopted: "consider", "possible", "probable", "definite" (the default value). The terms "pronounced" and "very pronounced" imply "definite" certainty but add a measure of severity.

LBBB and LVH:

When LBBB is at least "probable", any concomitant LVH statement is suppressed if QRS duration is \geq 140 ms. For QRS durations between 130 and 140 ms, the certainty of LBBB is lowered to "possible" and LVH is not suppressed.

If LBBB is "possible" and LVH is at least "probable", the LBBB qualifier is lowered to "consider".

LBBB and IVCD:

If QRS duration \geq 180 ms, the LBBB qualifier is increased by one point, e.g., "possible" becomes "probable". Any IVCD statement is suppressed in the presence of LBBB.

(I)RBBB and infarct:

In the presence of a septal or anterior infarct that is at least "probable", the statement "consider also periinfarct block" is added to the RBBB statement.

The qualifier of an inferior infarct is lowered one point in the presence of RBBB.

Incomplete RBBB is suppressed if RVH or infarct is at least "probable".

Any IVCD statement is suppressed in the presence of (I)RBBB.

LVH and infarct:

If the LVH qualifier is higher than the highest infarct qualifier, all infarct qualifiers are lowered one point. If the reverse is true, the LVH qualifier is lowered one point.

Lateral infarct and high-lateral infarct:

The infarct with lowest qualifier is suppressed, provided that no inferior infarct has been found.

ST elevation and LBBB, LVH, or ST depression:

An ST elevation statement is suppressed if the presence of LBBB is at least "probable" or if an LVH statement is made, unless an infarct statement is present with a stronger qualifier than LVH. In the presence of ST elevation, repolarization disturbance statements at corresponding locations are suppressed. ST depression and ST elevation are considered to be mirror images, taking the inferior location to be mirrored in the other localizations and vice versa. For instance, if an inferior ST elevation is present as well as an high-lateral repolarization disturbance without high-lateral infarct, the statement "high-lateral ST depression" is generated, further high-lateral repolarization statements being suppressed. Similarly, the statements "right-precordial ST depression", "mid-precordial ST depression", "left-precordial ST depression", and "inferior ST depression" can be generated.

2.22 Combination of statements

The program distinguishes six basic infarct locations: septal, anterior, lateral, high lateral, inferior, and posterior. If infarction is present at different locations, the program attempts to generate combined infarction statements. For instance, the statements "inferior infarct" and "posterior infarct" will be combined in the statement "inferoposterior infarct." The degree of probability of the combined infarct is equal to the highest degree of the separate infarcts. Thus, "probable" infarct and "possible" infarct will combine to "probable." The following combinations can be made:

"inferior"+"posterior"	\rightarrow "inferoposterior"
"posterior"+"lateral"	\rightarrow "posterolateral"
"inferior"+"lateral"	\rightarrow "inferolateral"
"inferior"+"posterior"+"lateral"	\rightarrow "inferoposterolateral"
"high lateral"+"lateral"	\rightarrow "high-lateral and lateral"
"anterior"+"lateral"	\rightarrow "anterolateral"
"anterior"+"lateral"+"high lateral"	ightarrow "anterolateral and high-lateral"
"anterior"+"septal"	\rightarrow "anteroseptal"
"anterior"+"septal"+"lateral"	\rightarrow "extensive anterior"
"anterior"+"septal"+"lateral"+"high lateral"	ightarrow "extensive anterior and high-lateral"

A similar procedure is followed for combining repolarization disturbances or ST elevation at different locations. For these abnormalities, locations "septal", "anterior", and "lateral" are renamed "right precordial", "mid precordial", and "left precordial", respectively. The locations in the combined statements are adjusted accordingly.

3 Rhythm analysis

3.1 Introduction

In this section of the algorithm a wide range of diagnoses is offered. There are six basic processing steps:

- 1 The first aim of the algorithm is to detect artificial pacemaker spikes. If these are found, the program will issue an appropriate statement and stop. Contour analysis is performed if there are enough unpaced complexes.
- 2 If no artificial pacemaker spikes are detected, the program will try to find QRS complexes which do not conform to the dominant complexes in the ECG. These non-dominant complexes are analyzed, classified and discarded so that further rhythm analysis can be performed on sequences of complexes of the dominant type.
- 3 After this procedure, with only one type of QRS complexes left to analyze, the program will look for flutter waves. Finding no flutter waves does not automatically mean that the diagnosis of atrial flutter cannot be made. This precaution has been built in because it is not always possible for the computer to detect flutter waves.
- 4 For the actual rhythm analysis, a division is made between regular and irregular rhythms. A rhythm is judged to be regular if the difference between the maximum and minimum RR interval is less than 20% of the average RR interval. If there are RR intervals falling outside this range, the rhythm is categorized as irregular.
- 5 Subsequently, the algorithm checks which relationship exists between the dominant QRS complexes and P waves. There are several possibilities:
 - There are no P waves found. The analyzed ECG falls into this category if fewer than 15% of the QRS complexes are preceded by P waves. This criterion has been built in to make allowance for the program detecting P waves by mistake.
 - Some QRS complexes are preceded by P waves, but others are not. This category will be chosen if 15-90% of the QRS complexes are preceded by P waves.
 - Each QRS complex is preceded by one and only one P wave. This category will be chosen if 90-100% of the QRS complexes is preceded by a P wave. This criterion was so formulated because it is possible that the program will incidentally miss a P wave.
 - Some or all QRS complexes are preceded by more than one P wave. This implies that the number of P waves is larger than that of the QRS complexes.
- 6 A final distinction between the diagnostic groups is the constancy of the PR intervals. With difference between the largest PR interval and the shortest PR interval of less than 30 ms the interval is said to be constant.

Basic parameters such as the consistency of the RR interval, the P/QRS ratio, and the consistency of the PR interval are not the only characteristics upon which a diagnosis is based. Other features are used to form a statement, such as heart rate, type of the non-dominant complexes, QRS duration, and PP interval. Through combinations, it is possible to form more than ISO statements concerning the type of rhythm that is present.

The subsequent paragraphs in this chapter will describe the parameters that are used in rhythm analysis, the general structure of the decision tree, the categories of rhythm statements that have been distinguished, and the diagnostic criteria for the rhythm statements grouped according to category. A cross-reference list is provided for ease of finding the criteria for a specific statement.

3.2 Rhythm parameters

The following parameters are used in the criteria for documenting rhythms

- P/QRS ratio: ratio of the number of P waves to the number of dominant QRS complexes. (If used as a measure for atrial activity).
- PR range: difference between the maximum and minimum PR interval (in ms). It is used as a measure for the constancy of the PR interval.
- Type of QRS complex: classification of QRS complexes according to their morphology. Complexes with the same morphology belong to one type. A basic distinction is between the dominant and non-dominant types of QRS complexes. The latter group may consist of one or more types of non-dominant QRS complexes.
- RR interval: interval between two consecutive QRS complexes (in ms).
- PP interval: interval between two consecutive P waves (in ms).
- PR interval: interval between a dominant QRS complex and a preceding P wave (in ms).
- atrial rate: number of atrial contractions (in beats per minute, BPM).
- Ventricular rate: number of ventricular contractions (in BPM).
- Rate variation: difference between the maximum and minimum RR interval, normalized to the average RR interval. (If used as a measure for regularity of the rhythm).
- QRS duration: difference between the global onset and end of the QRS complex (in ms).
- P axis: axis of the P wave in the frontal plane, using the areas under the P waves in lead I and II (in degrees).
- negative P amplitude (in μ V): absolute value of the negative deflection of the P wave.

3.3 Decision tree

The decision tree for the rhythm analysis is shown in Figure 1 on page 37. The program starts at the top decision node and proceeds depending on the value of the test. If the condition in the decision node is met, the branch marked by "yes" is taken. If not, the "no"-branch is followed. First, the activity of an artificial pacemaker, the occurrence of more than one type of QRS complexes (non-dominant complexes), and the presence of atrial flutter waves is tested. In presence of pacemaker spikes or flutter waves, an appropriate statement is issued and the rhythm analysis stops. If non-dominant complexes are also present, the type of arrhythmia is described. The non-dominant complexes are then discarded from further consideration and the analysis proceeds. Thus, after this first phase, only one type of QRS complex (the dominant complexes) is analyzed.

Second, regular rhythms are distinguished from irregular ones based on the consistency of the RR intervals. Both types of rhythm are subdivided in to different groups depending on the number of P waves versus the number of QRS complexes (P/QRS ratio) and on the consistency of the PR interval (PR range). The irregularity of a rhythm may be brief local. The program then describes the abnormality and discards the relevant complexes, similar to the way non-dominant complexes are handled. If the resultant rhythm, after removal of the atypical complexes, is regular, the rhythm is analyzed in the regular rhythm part of the program.

In Table 3 the various groups are listed together with a characterization of the types of arrhythmia in each group.

Group	Description
1	Rhythms with artificial pacemaker spikes
2	Non-dominant QRS complexes
3	Rhythms with atrial flutter or tachycardia
4	Regular rhythms with P/QRS \leq 0.15
5	Regular rhythms with 0.15 < P/QRS \leq 1.0 and PR range > 60 ms
6	Regular rhythms with P/QRS > 1.0 and PR range \leq 30 ms
7	Regular rhythms with P/QRS > 1.0 and PR range > 30 ms
8	Irregular rhythms with P/QRS \leq 0.15
9	Rhythms with paroxysmal acceleration or deceleration of the ventricular rate
10	Irregular rhythms with 0.15 < P/QRS \leq 0.9 and PR range \leq 30 ms
11	Irregular rhythms with 0.15 < P/QRS \leq 0.9 and PR range > 30 ms
12	Irregular rhythms with 0.9 < P/QRS \leq 1.2 and PR range > 30 ms
13	Irregular rhythms with P/QRS > 1.2 and PR range > 30 ms
14	Irregular rhythms with P/QRS > 1.0 and PR range \leq 30 ms
15	Rhythms with constant PR interval

Table 3. Grouping of arrhythmias as used in the rhythm analysis program.

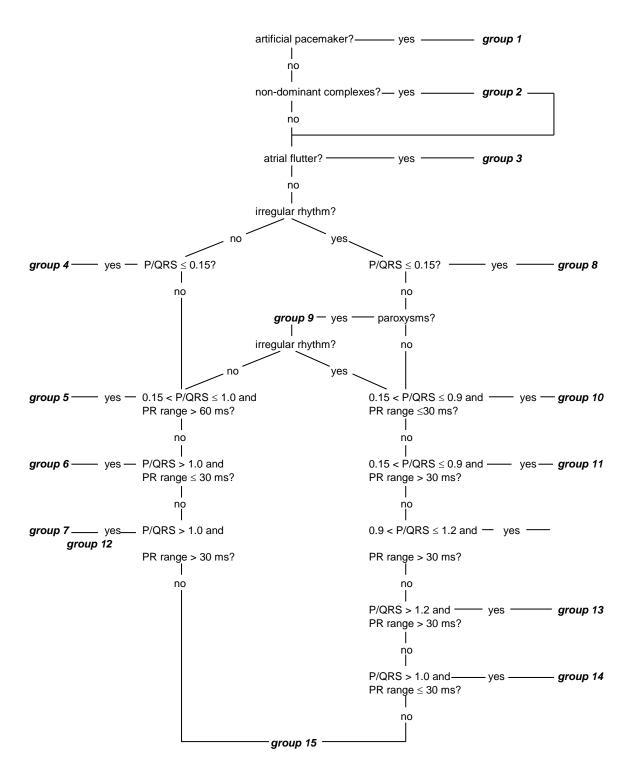


Figure 1 . Structure of the decision tree for rhythm classification.

3.4 Group 1: Rhythms with artificial pacemaker spikes

Artificial pacemaker spikes may have been detected by the measurement part of the program. If so, a general statement will be issued and the program halts. No attempt is made to specify the type of pacemaker, frequency, or functioning of the demand mechanism.

Say: "artificial pacemaker rhythm"

if: artificial pacemaker spikes have been found

3.5 Group 2: Non-dominant QRS complexes

Non-dominant QRS complexes can be classified in different categories. First, a test is performed on the occurrence of short paroxysms of at least three complexes ("runs"). To qualify as a run, its rate should exceed the inherent rate of the subsidiary pacemaker by 20% and the number of complexes belonging to the run should be less than 90% of the total number of QRS complexes. The identified non-dominant complexes are discarded and the program continues with the classification of the non-dominant complexes that are still present in the recording.

Second, consecutive non-dominant complexes without an acceleration of the QRS rate are searched for. Depending on the number of complexes found, the term "doublet" (two consecutive complexes) or "sequence" (three or more complexes) is used. One of the parameters considered here is the length of the RR interval preceding the first non-dominant complex of the doublet or sequence (the coupling interval) relative to the RR interval of the basic rhythm (RR ratio). This parameter is used to distinguish between premature beats and an escape rhythm. Again, complexes are discarded after their classification.

Following this, a test is performed for the presence of a bigeminy, i.e., for the alternation of the dominant QRS type with another (or others), whether continuously or only during part of the recording. If an alternation of QRS types is present during the entire recording, a special test is made for the presence of a ventricular escape-capture bigeminy.

Finally, the type of the remaining single non-dominant complexes is classified according to the QRS width and the duration of preceding RR interval. Coupling intervals (the interval between the ectopic complex and the preceding dominant QRS complex) are considered constant if the range of these intervals does not exceed 80 ms.

The classification of non-dominant complexes may need adjustment in the presence of some rhythms that are classified at a later stage of the rhythm analysis. The alterations are explained in the last paragraph of this section.

Run of non-dominant complexes

Say: if:	"with run of multiform premature ventricular complexes" more than one type of non-dominant complexes is in the run
Say: if: and	"with accelerated ectopic rhythm" one type of non-dominant complexes is in the run the run rate is \leq 100 BPM
Say:	"with supraventricular tachycardia with aberrant ventricular conduction," " consider ventricular tachycardia"
if:	one type of non-dominant complexes is in the run
and	the run rate is > 100 BPM
and	QRS duration in the run is \leq 120 ms
Say:	"with (probably) ventricular tachycardia," "consider supraventricular tachycardia with aberrant ventricular conduction"
if:	one type of non-dominant complexes is in the run
and	the suproto is a 100 PDM

- and the run rate is > 100 BPM
- and the QRS duration in the run is > 120 ms

Doublet or sequence of non-dominant complexes

Say:	"doublets of multiform premature ventricular complexes" or
	"sequence of multiform premature ventricular complexes"
if:	more than one type of non-dominant consecutive complexes is present
Say:	"doublets of supraventricular escapes with aberrant ventricular conduction, cause?" or
	"sequence of supraventricular escapes with aberrant ventricular conduction, cause? eg SA block?"
if:	one type of non-dominant consecutive complexes is present
and and	the QRS duration of the non-dominant complexes is \leq 120 ms the RR ratio is> 1.2
Say:	"doublets of ventricular escapes, cause?" or
	"sequence of ventricular escapes, cause? eg AV block?"
if:	one type of non-dominant consecutive complexes is present
and	the QRS duration of the non-dominant complexes is > 120 ms
and	the RR ratio > 1.2
Say:	"doublets of aberrantly conducted complexes" or
	"sequence of aberrantly conducted complexes"
if:	one type of non-dominant consecutive complexes is present
and	the 0.9 < RR ratio is \leq 1.2
Say:	"doublets of premature supraventricular complexes with aberrant ventricular conduction" or
	"sequence of supraventricular complexes with aberrant ventricular conduction"
if:	one type of non-dominant consecutive complexes is present
and	QRS duration non-dominant complexes ≤ 120 ms
and	the RR ratio is ≤ 0.9
Say:	"doublets of premature ventricular complexes" or
	"sequence of ventricular complexes"
if:	one type of non-dominant consecutive complexes is present
and	the QRS duration non-dominant complexes is > 120 ms
and	RR ratio ≤ 0.9

Alternating dominant and non-dominant complexes

- Say: "bigeminal rhythm, consider escape-capture bigeminy"
- if: alternating dominant/non-dominant complexes in the whole recording
- and one type of non-dominant consecutive complexes
- and QRS duration non-dominant complexes \leq 120 ms
- and RR preceding non-dominant < RR preceding dominant complexes
- and no P preceding dominant QRS complexes
- Say: "as a bigeminal rhythm"
- if: alternating dominant/non-dominant complexes in the whole recording
- and failure to meet one or more of the other criteria above
- Say: "episode of bigeminal rhythm"
- if: alternating dominant/non-dominant complexes for at least three consecutive times but not in the whole recording

Isolated non-dominant complexes

Say:	"premature ventricular complexes with variable coupling intervals," "consider ventricular parasystole"
if: and	QRS duration non-dominant complexes > 120 ms coupling interval range > 80 ms
Say:	"multiform premature ventricular complexes" or
if: and and	"premature ventricular complexes" QRS duration non-dominant complexes > 120 ms coupling interval range ≤ 80 ms RR ratio < 0.9
Say: if: and and	"ventricular escapes, cause? eg AV block?" QRS duration non-dominant complexes > ULN + 20 ms coupling interval range \leq 80 ms RR ratio > 1.2
Say: if:	"aberrantly conducted complexes" $0.9 < RR$ ratio ≤ 1.2
Say:	"premature supraventricular complexes with aberrant ventricular conduction and variable coupling intervals," "consider supraventricular parasystole"
if: and	QRS duration non-dominant complexes ≤ 100 ms coupling interval range > 80 ms
Say: if: and and	"supraventricular escapes with aberrant ventricular conduction, cause? eg SA block?" QRS duration non-dominant complexes \leq 100 ms coupling interval range \leq 80 ms RR ratio > 1.2
Say:	"premature supraventricular complexes with aberrant ventricular conduction" or
if: and and	"premature supraventricular complexes with variable aberrant ventricular conduction" QRS duration non-dominant complexes \leq 100 ms coupling interval range \leq 80 ms RR ratio \leq 0.9
Say:	"premature ventricular complexes or premature supraventricular complexes with aberrant ventricular conduction, with variable coupling intervals," "consider parasystole"
if: and	100 < QRS duration non-dominant complexes \leq 120 ms coupling interval range > 80 ms
Say:	"premature ventricular complexes or premature supraventricular complexes with aberrant ventricular conduction" or
	"multiform premature ventricular complexes and/or premature supraventricular complexes with (variable) aberrant ventricular conduction"
if: and and	100 < QRS duration non-dominant complexes \le 120 ms coupling interval range \le 80 ms RR ratio \le 0.9
Say: if: and and	"ventricular escapes or supraventricular escapes with aberrant ventricular conduction, cause?" $100 < QRS$ duration non-dominant complexes ≤ 120 ms coupling interval range ≤ 80 ms RR ratio > 1.2

Modification of statements

The program classifies the non-dominant complexes before it classifies the rhythm, assuming that both classifications are not contradictory. However, in the presence of atrial fibrillation, atrial flutter, atrial tachycardia, second degree AV block, or advanced AV block, a detailed classification of the non-dominant complexes is considered too difficult. Any statement on sequences, doublets or isolated non-dominant complexes will then be replaced with the general statement:

"premature ventricular complexes or aberrantly conducted complexes"

3.6 Group 3: Rhythms with atrial flutter or tachycardia

In atrial flutter, the atrial activity is represented in the ECG by regular, saw-tooth like oscillations (F waves) which occur at rates between 220 and 400 beats per minute (BPM). The measurement part of the program contains a routine for the detection of F waves. If F waves are detected, but the rate of the atrial activity is less than 220 BPM, a classification of atrial tachycardia is made.

Say: if:	"atrial tachycardia" atrial rate ≤ 220 BPM
Say: if:	"atrial flutter" atrial rate > 220 BPM
Say: if:	"with second degree AV block at variable conduction ratio" rate variation > 20%
Say: if: and	"with second degree AV block at N:1 conduction ratio" rate variation \leq 20% atrial rate is an integer multiple N of ventricular rate
Say: if: and and	"with complete AV block" rate variation \leq 20% atrial rate is not an integer multiple of ventricular rate heart rate < LLN
Say: if: and and	"with block or interference in the AV junction" rate variation \leq 20% atrial rate is not an integer multiple of ventricular rate heart rate \geq LLN

In the presence of atrial flutter without the characteristic saw-tooth appearance, F waves may be mistaken for P waves by the program. If the shortest PP interval found is shorter than 300 ms, corresponding with an atrial rate exceeding 220 BPM, atrial flutter may still correctly be classified.

- Say: "atrial flutter with advanced AV block"
- if: shortest PP interval < 300 ms
- and rate variation $\leq 20\%$

Say: "atrial flutter with second degree AV block at variable conduction ratio"

- if: shortest PP interval < 300 ms
- and rate variation > 20%

3.7 Group 4: Regular rhythms with P/QRS \leq 0.15

Say: if:	"idioventricular rhythm (no atrial activity detected" QRS duration ≥ 120 ms
and	heart rate < 40 BPM
Say:	"AV junctional rhythm with aberrant ventricular conduction or"
if: and	" accelerated idioventricular rhythm (no atrial activity detected)" QRS duration \ge 120 ms 40 \le heart rate < 60 BPM
u.ru	
Say:	"accelerated AV junctional rhythm with aberrant ventricular conduction or" " accelerated idioventricular rhythm (no atrial activity detected)"
if: and	QRS duration \ge 120 ms 60 \le heart rate < 100 BPM
Say:	"AV junctional tachycardia with aberrant ventricular conduction," " consider ventricular tachycardia (no atrial activity detected)"
if: and	QRS duration \ge 120 ms 100 \le heart rate < 120 BPM
and	
Say: if:	"supraventricular tachycardia with aberrant ventricular conduction," "consider ventricular tachycardia" QRS duration \geq 120 ms
and	$120 \le \text{heart rate} < 140 \text{ BPM}$
Say: if:	"supraventricular tachycardia with aberrant ventricular conduction," "consider ventricular tachycardia" QRS duration \geq 120 ms
and	$140 \le \text{heart rate} < 200 \text{ BPM}$
Say:	"supraventricular tachycardia with aberrant ventricular conduction and very high ventricular rate," " or ventricular tachycardia"
if:	QRS duration \ge 120 ms
and	heart rate \geq 200 BPM
Say:	"AV junctional rhythm (no atrial activity detected)"
if: and	QRS duration < 120 ms heart rate < 60 BPM
Say:	"accelerated AV junctional rhythm (no atrial activity detected"
if: and	QRS duration < 120 ms $60 \le heart rate < 100 BPM$
Say:	"AV junctional tachycardia (no atrial activity detected)"
if: and	QRS duration < 120 ms $100 \le$ heart rate < 120 BPM
Say: if:	"supraventricular tachycardia, consider atrial flutter with 2:1 A-V conduction" QRS duration < 120 ms
and	$120 \le \text{heart rate} < 140 \text{ BPM}$
Say:	"supraventricular tachycardia (atrial flutter or atrial tachycardia)"
if: and	QRS duration < 120 ms 140 \leq heart rate < 200 BPM
Say:	"supraventricular tachycardia with very high ventricular rate"
if: and	QRS duration < 120 ms heart rate ≥ 200 BPM

3.8 Group 5: Regular rhythms with 0.15<P/QRS≤1.0 and PR range > 60 ms

Say: if: and	"sinus rhythm with complete AV block; idioventricular escape rhythm" heart rate < 40 BPM QRS duration \ge 120 ms
Say:	"sinus rhythm with complete AV block; accelerated idioventricular escape rhythm," " consider AV junctional rhythm with aberrant ventricular conduction"
if: and	$40 \le$ heart rate < 60 BPM QRS duration \ge 120 ms
Say: if: and	 "sinus rhythm with block and/or interference in the AV junction;" accelerated AV junctional rhythm with aberrant ventricular conduction," consider ventricular tachycardia" 60 ≤ heart rate < 100 BPM QRS duration ≥ 120 ms
Say: if:	"sinus rhythm with block and/or interference in the AV junction;" " AV junctional tachycardia with aberrant ventricular conduction," " consider ventricular tachycardia" heart rate ≥ 100 BPM
and	QRS duration ≥ 120 ms
Say: if: and	"sinus rhythm with complete AV block; AV junctional escape rhythm" heart rate < 60 BPM QRS duration < 120 ms
Say:	"sinus rhythm with block and/or interference in the AV junction;" " accelerated AV junctional rhythm"
if: and	accelerated AV junctional mythm $60 \le \text{heart rate} < 100 \text{ BPM}$ QRS duration < 120 ms
Say: if: and	"supraventricular tachycardia with block and/or interference in the AV junction" $100 \le$ heart rate < 140 BPM QRS duration < 120 ms
Say: if: and	"supraventricular tachycardia," " consider atrial flutter with second degree AV block at 2:1 conduction ratio" heart rate \ge 140 BPM QRS duration < 120 ms

3.9 Group 6: Regular rhythms with P/QRS > 1.0 and PR range \leq 30 ms

Say:	"atrial flutter"
if:	shortest PP interval < 300 ms
Say:	"atrial tachycardia"
if:	300 ≤ shortest PP interval < 370 ms
Say: if:	"sinus tachycardia" 370 \leq shortest PP interval < 600 ms
Say:	"sinus rhythm"
if:	shortest PP interval > 600 ms
Say: if:	"with second degree AV block at N:1 conduction ratio" atrial rate is an integer multiple N of ventricular rate
Say:	"with advanced AV block at variable conduction ratio"

if: atrial rate is not an integer multiple of ventricular rate

3.10 Group 7: Regular rhythms with P/QRS > 1.0 and PR range > 30 ms

Say: if:	"atrial tachycardia" 300 ≤ shortest PP interval < 370 ms
Say: if:	"sinus tachycardia" 370 ≤ shortest PP interval < 600 ms
Say:	"sinus rhythm" shortest PP interval ≥ 600 ms
Say: if: and	"with second degree AV block at 2:1 conduction ratio" shortest PR interval > 120 ms $1.75 < P/QRS$ ratio ≤ 2.0
If the crit	eria for a 2:1 AV block are not fulfilled, an AV dissociation due to block or interference is
Say: if: and	"with complete AV block" "idioventricular escape rhythm" QRS duration ≥ 120 ms heart rate < 40 BPM
Say: if: and	 "with complete AV block" " accelerated idioventricular escape rhythm," " consider AV junctional rhythm with aberrant ventricular conduction" QRS duration ≥ 120 ms 40 BPM ≤ heart rate < 60 BPM
Say: if: and	"with block and/or interference in the AV junction" "accelerated AV junctional rhythm with aberrant ventricular conduction," " consider ventricular tachycardia" QRS duration \geq 120 ms $60 \leq$ heart rate < 100 BPM
Say: if: and	"with block and/or interference in the AV junction" "AV junctional tachycardia with aberrant ventricular conduction," " consider ventricular tachycardia" QRS duration ≥ 120 ms heart rate ≥ 100 BPM
Say: if: and	"with complete AV block" "AV junctional escape rhythm" QRS duration < 120 ms heart rate < 60 BPM
Say: if: and	"with block and/or interference in the AV junction" "accelerated AV junctional rhythm" QRS duration < 120 ms $60 \le$ heart rate < 100 BPM
Say: if: and	"with block and/or interference in the AV junction" "AV junctional tachycardia" QRS duration < 120 ms heart rate \ge 100 BPM

assumed.

3.11 Group 8: Irregular rhythms with P/QRS \leq 0.15

Say: if:	"atrial fibrillation with slow mean ventricular response" heart rate < 50 BPM
Say: if:	"atrial fibrillation with normal mean ventricular response" $50 \le heart rate < 100 BPM$
Say: if:	"atrial fibrillation with rapid mean ventricular response" $100 \le$ heart rate < 180 BPM
Say: if:	"atrial fibrillation with very rapid mean ventricular response" heart rate \geq 180 BPM
Say: if:	" with long RR intervals" there is an RR interval > 1.6 s

3.12 Group 9: Rhythms with paroxysmal acceleration or deceleration of ventricular rate

The program defines a paroxysmal acceleration ("run") as a sequence of three or more dominant complexes with a rate that exceeds the inherent rate of the subsidiary pacemaker by 40%. Once a run has been detected and classified, the complexes are discarded. The remaining rhythm, which may be perfectly regular, is classified separately.

Say: " with run of dominant complexes" if: there is a run and run rate < 140 BPM Say: " with episode of paroxysmal junctional tachycardia" there is a run if: $140 < run rate \le 160 BPM$ and Say: " with episode of paroxysmal atrial tachycardia" if: there is a run run rate > 160 BPM and

An arrest is defined as a transient disturbance in impulse formation giving rise to an RR interval which is at least 50% longer than the average RR interval and has a duration of at least 2 s.

Say: "with ventricular arrest"

if: there is an arrest

3.13 Group 10: Irregular rhythms with 0.15 < P/QRS \leq 0.9 and PR range \leq 30 ms

First, a test is made on the alternation of RR intervals with and without a P wave to rule out a bigeminal rhythm due to sinus rhythm with atrial or AV junctional premature complexes. If a bigeminal rhythm is found the program halts. If not, tests are performed on each RR interval in which no P wave has been detected. If the interval is shortened, a premature supraventricular complex is assumed; if it is prolonged, an AV junctional escape is assumed. The shortened or prolonged RR intervals are deleted after they have been analyzed and the program continues with the logic for rhythms with constant PR intervals.

"bigeminy: sinus rhythm with alternate premature supraventricular complexes" Say: if: P/QRS ratio ≥ 0.4 and test bigeminy passed Say: "premature supraventricular complexes" if: test PSVC passed and test bigeminy failed "AV junctional escapes, cause? eg SA block or AV block?" Say: if: test escape passed test bigeminy failed and Say: "consider premature supraventricular complexes" if: test bigeminy failed test PSVC failed and

and test escape failed

3.14 Group 11: Irregular rhythms with 0.15 < P/QRS \leq 0.9 and PR range > 30 ms

If the number of P waves is small, no further specification of the atrial rhythm is given. Otherwise, it is tested whether there exists a second degree AV block of the Wenckebach type. Three conditions should be met for this test to pass: (1) the maximal RR interval should exceed the minimal RR interval by at least 40%, (2) the RR interval preceding the longest RR interval should be shorter than the one following the longest RR interval, and (3) the shortest PR interval should be found in the longest RR interval. If this test fails, a distinction is to be made between AV dissociation and sinus rhythm with ectopic complexes of supraventricular origin.

Say: if:	"undetermined atrial rhythm with block and/or interference in the AV junction" "consider atrial fibrillation" P/QRS ratio < 0.3
Say: if: and	"sinus rhythm with second degree AV block, type I (Wenckebach)" P/QRS ratio ≥ 0.3 test Wenckebach passed
Say:	"undetermined atrial rhythm with block and/or interference in the AV junction"
if:	PR range > 120 ms
Say: if: and	"supraventricular escapes, cause? eg AV block, SA block?" $60 < PR$ range ≤ 120 ms heart rate < 50 BPM
Say: if: and	"consider supraventricular escapes, cause? eg AV block, SA block?" $30 < PR$ range ≤ 60 ms heart rate < 50 BPM
Say:	"premature atrial complexes"
if:	$60 < PR range \le 120 ms$
and	heart rate $\ge 50 BPM$
Say:	"consider premature atrial complexes"
if:	$30 < PR \text{ range } \le 60 \text{ ms}$
and	heart rate $\ge 50 \text{ BPM}$
Say:	"sinus bradycardia"
if:	heart rate < 50 BPM
Say:	"sinus rhythm"
if:	50 ≤ heart rate < 100 BPM
Say: if:	"sinus tachycardia" heart rate \ge 100 BPM

3.15 Group 12: Irregular rhythms with $0.9 < P/QRS \le 1.2$ and PR range > 30 ms

The presence of a second degree AV block of the Wenckebach type is considered by performing the Wenckebach test as described in the previous paragraph. If it fails, a test is performed on the PR range in the RR intervals of about equal length. If this range is large, sinus rhythm with block or interference in the AV junction is considered. If not, the rhythm is considered to consist of sinus rhythm complicated by ectopic supraventricular impulses. To distinguish between escapes and premature supraventricular complexes, a test is performed on the sequence of short and long RR intervals.

Say: if:	"sinus rhythm with second degree AV block, type I (Wenckebach)" test Wenckebach passed
Say: if:	"sinus rhythm with block and/or interference in the AV junction" PR range \geq 120 ms
Say: if:	"sinus bradycardia" heart rate < 50 BPM
Say: if:	"sinus rhythm" 50 ≤ heart rate < 100 BPM
Say: if:	"sinus tachycardia" heart rate \geq 100 BPM
Say: if:	"supraventricular escapes, cause? eg SA block or AV block?" test escape passed
Say: if:	"premature supraventricular complexes" test escape failed

3.16 Group 13: Irregular rhythms with P/QRS > 1.2 and PR range > 30 ms

- Say: "supraventricular (sinus?) tachycardia with second degree AV block at variable conduction ratio"
- if: $300 \le$ shortest PP interval < 600 ms

Say: "sinus rhythm with second degree AV block at variable conduction ratio"

if: shortest PP interval $\ge 600 \text{ ms}$

3.17 Group 14: Irregular rhythms with P/QRS > 1.0 and PR range \leq 30 ms

The irregularity of the ventricular rhythm combined with the constancy of the PR interval and a higher number of P waves than QRS complexes implies that either a second degree AV block with constant preceding conduction times (Mobitz type II) or advanced AV block with varying conduction ratios is present. In case of Mobitz type II AV block, the longer RR intervals will most likely be sandwiched between shorter RR intervals. This is unlikely to occur in cases with advanced AV block with varying conduction ratios.

Say:	"atrial flutter"
if:	shortest PP interval < 300 ms
Say:	"atrial tachycardia"
if:	300 ≤ shortest PP interval < 370 ms
Say:	"sinus tachycardia"
if:	370 ≤ shortest PP interval < 600 ms
Say:	"sinus rhythm"
if:	shortest PP interval ≥ 600 ms
Say:	"with second degree AV block, type II (Mobitz II)"
if:	varying RR intervals fulfilling Mobitz II criteria

- Say: "with second degree AV block at variable conduction ratio"
- if: RR intervals not fulfilling Mobitz II criteria

3.18 Group 15: Rhythms with constant PR interval

In this group rhythms with constant PR interval are classified that either did not qualify for analysis in one of the previous groups or have only partly been analyzed there (see Figure 1). Rhythms that were not yet analyzed comprise regular and irregular rhythms with 0.9 < P/QRS ratio ≤ 1.0 and PR range ≤ 30 ms. The rhythms of this group may be classified as uncomplicated sinus rhythm as far as SA and AV conduction are concerned, provided they have a normal P wave axis and PR interval.

First, a test for premature supraventricular complexes is performed as these complexes may still be present if the rate variation is large. Second, if the rhythm is regular with a PR interval variation between 30 and 60 ms while the number of P waves found is less than the number of QRS complexes, a pacemaker shift should be considered. (If the PR range exceeds 60 ms, the rhythm has been taken care of in group 5.) Third, if the program detects a negative P axis with a sufficiently negative P-wave amplitude in aVF, an ectopic atrial rhythm or an AV junctional rhythm is considered present, depending on the length of the PR interval and the program halts. If not, various types of sinus rhythm can be classified, with or without arrhythmia dependent on the rate variation. Finally, the presence of first degree AV block, corrected for heart rate, is tested at different levels of severity. The PR interval limits used by the program are shown in Table 4.

AV conduction"

Say: if:	"premature supraventricular complexes" test PSVC passed
Say:	"PR interval variation: pacemaker shift?"
if:	30 < PR range ≤ 60 ms
and	P/QRS < 1.0
Say:	"AV junctional rhythm"
if:	P axis $\leq -30^{\circ}$
and	negative P amplitude in aVF > 70 μ V
and	PR interval \leq 80 ms
Say:	"ectopic atrial rhythm"
if:	P axis ≤ –30°
and	negative P amplitude in aVF > 70 μV
and	PR interval > 80 ms
Say:	"sinus bradycardia with sinus arrhythmia"
if:	heart rate < 50 BPM
and	rate variation > 20%
Say:	"sinus arrhythmia"
if:	50 ≤ heart rate < 100 BPM
and	rate variation > 20%
Say: if: and	"sinus tachycardia with sinus arrhythmia" heart rate $\ge 100 \text{ BPM}$ rate variation > 20%
Say: if: and	"extreme bradycardia, consider sinus rhythm with 2:1 heart rate < 40 BPM rate variation $\leq 20\%$

Say:	"sinus bradycardia"
if:	$40 \le \text{heart rate} < 50 \text{ BPM}$
and	rate variation $\le 20\%$
Say:	"sinus rhythm (slow)"
if:	$50 \le \text{heart rate} < 60 \text{ BPM}$
and	rate variation $\le 20\%$
Say:	"sinus rhythm"
if:	$60 \le \text{heart rate} < 90 \text{ BPM}$
and	rate variation $\le 20\%$
Say:	"sinus rhythm (rapid)"
if:	$90 \le \text{heart rate} < 100 \text{ BPM}$
and	rate variation $\le 20\%$
Say:	"sinus tachycardia"
if:	heart rate \ge 100 BPM
and	rate variation \le 20%
Say:	"short PR interval"
if:	PR interval < 120 ms
and	heart rate < 140 BPM
Say:	"first degree AV block (limited)" or "first degree AV block" or
if:	"first degree AV block (extensive) " the appropriate limit from Table 4 is met

Table 4. PR intervals limits (in ms) for first degree AV block at different levels of severity. Limits are heart-rate dependent.

severity			heart rate		
	≤70	71-90	91-110	111-130	> 130
limited	220	210	200	190	180
typical	260	248	235	222	210
extensive	300	285	270	255	240

4 Statement index

Α

aberrantly conducted complexes	
accelerated AV junctional rhythm	45, 47
accelerated AV junctional rhythm (no atrial activity detected)	44
accelerated AV junctional rhythm with aberrant ventricular conduction	
accelerated idioventricular escape rhythm	
accelerated idioventricular rhythm (no atrial activity detected)	
anterior infarct	21
arm electrodes interchanged	10
artificial pacemaker rhythm	
as a bigeminal rhythm	
atrial fibrillation with normal mean ventricular response	48
atrial fibrillation with rapid mean ventricular response	48
atrial fibrillation with slow mean ventricular response	48
atrial fibrillation with very rapid mean ventricular response	48
atrial flutter	
atrial flutter with advanced AV block	43
atrial flutter with second degree AV block at variable conduction ratio	43
atrial tachycardia	
AV junctional escape rhythm	45, 47
AV junctional escapes, cause? eg SA block or AV block?	49
AV junctional rhythm	53
AV junctional rhythm (no atrial activity detected)	
AV junctional rhythm with aberrant ventricular conduction	44
AV junctional tachycardia	47
AV junctional tachycardia (no atrial activity detected)	
AV junctional tachycardia with aberrant ventricular conduction	

В

bigeminal rhythm,	consider escape cap	oture bigemin	y		 .40
bigeminy: sinus rh	ythm with alternate p	premature sup	oraventricular c	omplexes	 .49

С

compatible with early repolarization	27
consider acute ischemia	27
consider also periinfarct block	29
consider atrial fibrillation	50
consider atrial flutter with second degree AV block at 2:1 conduction ratio	45
consider AV junctional rhythm with aberrant ventricular conduction	45, 47
consider feminine pattern	27
consider feminine pattern and/or ischemia	27
consider infarct of acute occurrence	27
consider infarct of recent occurrence	27
consider ischemia	27
consider ischemia and/or digitalis	27
consider ischemia or LV overload	27
consider ischemia, LV overload and/or digitalis	27
consider ischemia, LV overload or aspecific change	27
consider ischemia, or aspecific change	27
consider juvenile and/or feminine pattern	27
consider juvenile pattern	27
consider LVH	17
consider parasystole	41

consider pericarditis	
consider premature atrial complexes	50
consider premature supraventricular complexes	
consider pulmonary disease	
consider RVH	
consider supraventricular escapes, cause? eg AV block, SA block?	
consider supraventricular parasystole	
consider supraventricular tachycardia with aberrant ventricular conduction	
consider ventricular parasystole	
consider ventricular tachycardia	
consider ventricular tachycardia (no atrial activity detected)	
consistent with LAFB	
consistent with LPFB	

D

dextrocardia doublets of aberrantly conducted complexes	
doublets of multiform premature ventricular complexes	
doublets of premature supraventricular complexes with aberrant ventricular conduction	
doublets of premature ventricular complexes	
doublets of supraventricular escapes with aberrant ventricular conduction doublets of ventricular escapes, cause?	

Ε

ectopic atrial rhythm	53
episode of bigeminal rhythm	
extreme bradycardia, consider sinus rhythm with 2:1 AV conduction	
extreme right inferior axis deviation	
extreme right superior axis deviation	

F

first degree AV block	54
first degree AV block (extensive)	
first degree AV block (limited)	54

Н

high P voltage	14
high T voltage, consider hyperkalemia	26
high-lateral infarct	
high-lateral ST depression	
high-lateral ST elevation	
horizontal axis	

I

idioventricular escape rhythm	45.47
idioventricular rhythm (no atrial activity detected)	
incomplete RBBB	
inferior infarct	
inferior ST depression	
inferior ST elevation	
intra-atrial conduction delay	14

L

lateral infarct	
LBBB	
left atrial overload	
left axis deviation	15

eft-precordial ST depression	30
eft-precordial ST elevation	
ong QT interval, consider hypocalcaemia or quinidin-like drug	
ow QRS voltage	.16
ow QRS voltage in extremity leads	
ow QRS voltage in precordial leads	
_VH	

Μ

marked intraventricular conduction delay	
marked left axis deviation	
marked repolarization disturbance	
marked right axis deviation	
mid-precordial ST depression	
mid-precordial ST elevation	
minimal repolarization disturbance	
minor repolarization disturbance	
moderate intraventricular conduction delay	
moderate repolarization disturbance	
multiform premature ventricular complexes	
multiform premature ventricular complexes and/or premature supraventricular complexes with	
(variable) aberrant ventricular conduction	41

Ρ

possible anterior infarct	21
possible high-lateral infarct	23
possible inferior infarct	19
possible lateral infarct	22
possible LBBB	11
possible LVH	17
possible posterior infarct	24
possible septal infarct	20
possible WPW	11
posterior infarct	12
PR interval variation: pacemaker shift?	53
premature atrial complexes	50
premature supraventricular complexes	
premature supraventricular complexes with aberrant ventricular conduction	41
premature supraventricular complexes with aberrant ventricular conduction and variable coupling	
intervals,	
premature supraventricular complexes with variable aberrant ventricular conduction	
premature ventricular complexes	
premature ventricular complexes or aberrantly conducted complexes	
premature ventricular complexes or premature supraventricular complexes with aberrant ventricular	
conduction	
premature ventricular complexes or premature supraventricular complexes with aberrant ventricular	
conduction, with variable coupling intervals	
premature ventricular complexes with variable coupling intervals	
probable anterior infarct	
probable high-lateral infarct	
probable inferior infarct	
probable LVH	
probable RVH	18
probable septal infarct	,
probably aspecific change	
probably reciprocal	
pronounced LVH	17

R

RBBB	12
right atrial overload	14
right axis deviation	15
right atrial overload right axis deviation right-precordial ST depression right-precordial ST elevation RSR' in V1	30
right-precordial ST elevation	25
RSR' in V1	28
RSR' in V1 and V2	28
RSR' in V2	28
RVH	

S

secondary to infarct			
secondary to infarct, consider also LV overload			.27
secondary to LBBB			.27
secondary to LVH			
secondary to LVH, consider also infarct			.27
secondary to LVH, consider also ischemia			
secondary to RBBB			.27
secondary to RBBB and/or juvenile pattern			.27
secondary to RVH			.27
secondary to RVH and/or juvenile pattern			.27
septal infarct			
sequence of aberrantly conducted complexes			
sequence of multiform premature ventricular complexes			.39
sequence of supraventricular complexes with aberrant ventricular conduction			.39
sequence of supraventricular escapes with aberrant ventricular conduction, cause? eg \$	SA block?		.39
sequence of ventricular complexes			.39
sequence of ventricular escapes, cause? eg AV block?			.39
short PR interval			
short QT interval, consider hypercalcaemia			.16
sinus arrhythmia			.53
sinus bradycardia		.50, 51,	54
sinus bradycardia with sinus arrhythmia			.53
sinus rhythm	.46, 47, 50	, 51, 52,	54
sinus rhythm (rapid)			
sinus rhythm (slow)			
sinus rhythm with block and/or interference in the AV junction		45,	51
sinus rhythm with complete AV block			.45
sinus rhythm with second degree AV block at variable conduction ratio			
sinus rhythm with second degree AV block, type I (Wenckebach)			
sinus tachycardia			
sinus tachycardia with sinus arrhythmia			
slight intraventricular conduction delay			
slight repolarization disturbance			
supraventricular (sinus?) tachycardia with second degree AV block at variable conduction			
supraventricular escapes with aberrant ventricular conduction, cause? eg SA block?			
supraventricular escapes, cause? eg AV block, SA block?			
supraventricular escapes, cause? eg SA block or AV block?			
supraventricular tachycardia			
supraventricular tachycardia (atrial flutter or atrial tachycardia)			44
supraventricular tachycardia with aberrant ventricular conduction			
			.44
supraventricular tachycardia with aberrant ventricular conduction and very high ventricu	lar rate		.44 .44
supraventricular tachycardia with aberrant ventricular conduction and very high ventricular supraventricular tachycardia with block and/or interference in the AV junction	lar rate		.44 .44 .45
supraventricular tachycardia with aberrant ventricular conduction and very high ventricu	lar rate		.44 .44 .45 .44

U

undetermined atrial rhythm with block and/or interference in the AV junction	50
unusual P axis	14

V

ventricular escapes or supraventricular escapes with aberrant ventricular conduction, cause? ventricular escapes, cause? eg AV block?	
ventricular tachycardia	
vertical axis	
very marked intraventricular conduction delay	13
very marked repolarization disturbance	27
very pronounced LVH	17

W

with (probably) ventricular tachycardia	with (probably) ventricular tachycardia	38
with advanced AV block at variable conduction ratio46with block and/or interference in the AV junction47with block or interference in the AV junction43with complete AV block43, 47with cor pulmonale25with episode of paroxysmal atrial tachycardia48with episode of paroxysmal junctional tachycardia48with run of dominant complexes48with run of dominant complexes48with second degree AV block at 2:1 conduction ratio47with second degree AV block at variable conduction ratio43, 46with second degree AV block at variable conduction ratio43, 52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48	with accelerated ectopic rhythm.	
with block and/or interference in the AV junction47with block or interference in the AV junction43with complete AV block43, 47with cor pulmonale25with episode of paroxysmal atrial tachycardia48with episode of paroxysmal junctional tachycardia48with long RR intervals48with run of dominant complexes48with second degree AV block at 2:1 conduction ratio47with second degree AV block at N:1 conduction ratio43, 42with second degree AV block at variable conduction ratio43, 52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48	with advanced AV block at variable conduction ratio	
with block or interference in the AV junction43with complete AV block43, 47with cor pulmonale25with episode of paroxysmal atrial tachycardia48with episode of paroxysmal junctional tachycardia48with long RR intervals48with run of dominant complexes48with second degree AV block at 2:1 conduction ratio47with second degree AV block at N:1 conduction ratio43, 46with second degree AV block at variable conduction ratio43, 52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48		
with complete AV block43, 47with cor pulmonale25with episode of paroxysmal atrial tachycardia48with episode of paroxysmal junctional tachycardia48with long RR intervals48with run of dominant complexes48with run of multiform premature ventricular complexes38with second degree AV block at 2:1 conduction ratio47with second degree AV block at N:1 conduction ratio43, 46with second degree AV block at variable conduction ratio43, 52with second degree AV block, type II (Mobitz II)52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48	with block or interference in the AV junction	
with cor pulmonale25with episode of paroxysmal atrial tachycardia48with episode of paroxysmal junctional tachycardia48with long RR intervals48with run of dominant complexes48with run of multiform premature ventricular complexes38with second degree AV block at 2:1 conduction ratio47with second degree AV block at N:1 conduction ratio43, 46with second degree AV block at variable conduction ratio43, 52with second degree AV block, type II (Mobitz II)52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48	with complete AV block	
with episode of paroxysmal atrial tachycardia.48with episode of paroxysmal junctional tachycardia48with long RR intervals48with run of dominant complexes48with run of multiform premature ventricular complexes.38with second degree AV block at 2:1 conduction ratio47with second degree AV block at N:1 conduction ratio43, 46with second degree AV block at variable conduction ratio43, 52with second degree AV block, type II (Mobitz II)52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48	with cor pulmonale	
with long RR intervals48with run of dominant complexes48with run of multiform premature ventricular complexes38with second degree AV block at 2:1 conduction ratio47with second degree AV block at N:1 conduction ratio43, 46with second degree AV block at variable conduction ratio43, 52with second degree AV block, type II (Mobitz II)52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48		
with run of dominant complexes48with run of multiform premature ventricular complexes38with second degree AV block at 2:1 conduction ratio47with second degree AV block at N:1 conduction ratio43, 46with second degree AV block at variable conduction ratio43, 52with second degree AV block, type II (Mobitz II)52with supraventricular tachycardia with aberrant ventricular conduction38with ventricular arrest48	with episode of paroxysmal junctional tachycardia	
with run of multiform premature ventricular complexes	with long RR intervals	
with second degree AV block at 2:1 conduction ratio.47with second degree AV block at N:1 conduction ratio.43, 46with second degree AV block at variable conduction ratio.43, 52with second degree AV block, type II (Mobitz II).52with supraventricular tachycardia with aberrant ventricular conduction.38with ventricular arrest.48	with run of dominant complexes	
with second degree AV block at N:1 conduction ratio. 43, 46 with second degree AV block at variable conduction ratio. 43, 52 with second degree AV block, type II (Mobitz II) 52 with supraventricular tachycardia with aberrant ventricular conduction 38 with ventricular arrest 48	with run of multiform premature ventricular complexes	
with second degree AV block at variable conduction ratio	with second degree AV block at 2:1 conduction ratio	47
with second degree AV block, type II (Mobitz II)	with second degree AV block at N:1 conduction ratio	43, 46
with supraventricular tachycardia with aberrant ventricular conduction	with second degree AV block at variable conduction ratio	
with ventricular arrest		
WPW10	with ventricular arrest	48
	WPW	10

5 The Performance of MEANS

Development of the Modular ECG Analysis System (MEANS) is an ongoing process. While the basic structure of the program has remained the same over the years, most program modules have undergone important changes. In the past, the performance of the different modules of MEANS has been assessed both by the program developers themselves and by independent observers. An independent assessment has been carried out during the project Common Standards for Quantitative Electrocardiography (CSE), an international study in which all major ECG computer programs were evaluated with respect to signal-analysis and diagnostic interpretation [1]. The final CSE results on waveform recognition were obtained in 1987 [2], those on diagnostic interpretation in 1990 [3]. Since then, many modifications have been made in the MEANS package. This report describes the performance of MEANS (version DB.AI) on the CSE waveform-recognition measurement and contour databases.

Methods

CSE waveform-recognition measurement database

The CSE database on waveform recognition contains 250 ECGs, but reference locations (onset and offset of the P wave and the QRS complex and end of the T wave) have been made public for only half of the ECGs. The 125 waveforms from the M01 data set have been evaluated. Tests have been removed from the evaluation of the M01 data set per 60601-2-51 clauses 50.101.1.3 and 50.101.3.2. The removed tests include test numbers: 006, 010, 018, 020, 023, 045, 050, 052, 054, 056, 057, 067, 070, 092, 093, 094, 100, 109, 111, 117, 119, 120, 121, and 122.

CSE contour diagnostic database

The CSE contour diagnostic database consists of 1,220 ECGs, divided over eight categories: normal (NOR), left ventricular hypertrophy (LVH), right ventricular hypertrophy (RVH), biventricular hypertrophy (BVH), anterior myocardial infarction (AMI), inferior myocardial infarction (IMI), combined infarction (MIX), and combined ventricular hypertrophy and myocardial infarction (VH+MI). Two reference standards are available per ECG: one is based on ECG-independent clinical information ("clinical truth"), the other is the combination of interpretations from a group of cardiologists ("combined referee"). These reference standards remain under lock and key at the present CSE processing center in Lyon (head: Dr. P. Rubel). Collection and composition of the database have been described in detail before [4, p 49-82].

All 1,220 ECGs were processed by MEANS using MEANS (version DB.AI). Diagnostic statements produced by MEANS were mapped onto a set of diagnostic codes as prescribed by the CSE protocol [4, p 83-104]. These codes were submitted to the CSE processing center in Lyon where the program results were compared with the reference standards. Classification matrices and summary statistics are documented below.

Results

Waveform recognition

Table 1. Interval measurements on biological ECGs - mean differences and standard deviations for global durations and intervals. Collected in conformity with the procedure used in the CSE study [2].

Global measurement	Calculated mean difference (ms)	Calculated standard deviation (ms)	Comments
P-duration	3.2	9.9	
PQ-interval	1.0	8.2	
QRS-duration	3.1	9.4	
QT-interval	3.2	12.0	

Table 2. Accuracy of diagnostic interpretative statements on the CSE contour diagnostic database vs. clinical truth

Diagnostic Category	No. of ECGs tested	Sensitivity; %	Specificity: %	Positive predictive value %	Comments
Normal	381	96.6	72.7	61.9	
LVH	181	59.7	97.8	82.9	
RVH	52	20.2	100.0	100.0	
BVH	51	32.4	100.0	100.0	
AMI	170	77.9	97.3	82.3	
IMI	273	63.9	98.5	92.3	
MIX	73	62.0	99.7	93.8	
VH+MI	31	50.0	100.0	100.0	
HYPER	N/A	49.3	98.3	89.0	
MI	N/A	68.7	94.3	90.8	

Diagnostic Category	No. of ECGs tested	Sensitivity; %	Specificity: %	Positive predictive value %	Comments
Normal	381	98.4	51.9	98.2	
LVH	181	82.0	89.9	94.8	
RVH	52	40.1	100.0	100.0	
BVH	51	69.6	98.2	97.0	
AMI	170	89.1	89.0	98.0	
IMI	273	78.7	89.6	96.5	
MIX	73	79.6	87.9	95.7	
VH+MI	31	81.1	96.0	96.8	
HYPER	N/A	N/A	N/A	N/A	
МІ	N/A	82.9	91.5	97.9	

Table 3. Accuracy of diagnostic interpretative statements on the CSE contour diagnostic database vs. combined referee.

References

- 1. Willems JL, Arnaud P, Van Bemmel JH, Degani R, Macfarlane PW, Zywietz C. Common standards for quantitative electrocardiography: goals and main results. Methods Inf Med 1990;29:263-71.
- Willems JL, Arnaud P, Van Bemmel JH, et al. A reference data base for multilead electrocardiographic computer measurement programs. J Am Coll Cardiol 1987;10:1313-21.
- 3. Willems JL, Abreu-Lima C, Arnaud P, et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med 1991;325:1767-73.
- 4. Willems JL. Common Standards for Quantitative Electrocardiography, 10th Progress Report. Leuven: ACCO Publ, 1990.